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Abstract: This paper presents the results of differential cryptanalysis of the 

lightweight block cipher Cypress-256. The method for searching multi-round 

differential characteristic of the block cipher Cypress-256 is proposed. The 

searching assumes 1) building a big set of one-round differential characteristics 

and search for possible combinations of one-round characteristics into multi-

round ones; 2) extending one-round differential characteristics with the 

probability up to certain threshold into multi-round characteristics. The 

following experiments show that the most probable one-round differential 

characteristics have input differences with 4-6 active bits which are distributed 

between different words. Besides that, high-probable one-round differential 

characteristics, which output differences have a small Hamming weight, cannot 

be extended to build high-probable multi-round differential characteristics. Due 

to application of the method assuming extension of one-round differential 

characteristics into multi-round ones, the differential characteristic up to 6 

rounds was built, so 10-round block cipher Cypress-256 is resistant to 

differential cryptanalysis according to the requirements of practical criterion. 

Copyright © Research Institute for Intelligent Computer Systems, 2020.  

All rights reserved. 

 

 

1. INTRODUCTION 

Symmetric primitives include block [1, 2] and 

stream ciphers [3, 4], hash-functions, etc. Over the 

past years there is an increased interest in 

researching and designing lightweight symmetric 

algorithms that is explained by rapid development of 

such technologies as Internet of Things, smart-cards, 

etc., i.e., those that have a limited power 

consumption [5, 6]. Besides that, National Institute 

of Standards and Technology announced a 

competition for the development of lightweight 

algorithms for use in simple electronic devices [7]. 

Recently, the post quantum lightweight block 

cipher Cypress was developed in Ukraine [8]. 

Cypress provides both fast encryption speed and 

high level of cryptographic strength by operating 

256- and 512-bit blocks and keys.  

Cypress is based on Feistel network with ARX 

round function. ARX-transformation becomes very 

popular while developing lightweight cryptographic 

primitives due to the simplicity of its operations 

(addition, rotation and XOR). Block ciphers like 

SPECK [9], TEA [10], LEA [11], etc. are based on 

ARX-transformation.  

The problem faced by developers of ARX-

ciphers is the difficulty of evaluation of cipher 

strength to differential and linear cryptanalysis 

because of the absence of the universal evaluation 

model for such ciphers. If SPN ciphers are usually 

based on S-box with strong cryptographic properties 

[12, 13], ARX-ciphers are usually designed more 

heuristically. 

The previous papers devoted to Cypress analysis 

include the evaluation of cipher performance and 

avalanche properties [8] along with methods of 

searching for high-probable one-round differential 

characteristics of Cypress-256 [14]. 

In this paper we present methods for searching of 

multi-round differential characteristics of Cypress-

256 based on several assumptions. Our research 

shows that the block cipher Cypress-256 is resistant 

to differential cryptanalysis. 
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2. THE BLOCK CIPHER CYPRESS-256 

The lightweight block cipher Cypress-256 

operates on 256-bit blocks using a 256-bit key. The 

round function operations are performed on 32-bit 

words. The number of rounds is 10.  

A schematic representation of the round function 

is shown in Fig. 1 [8]. The round function is the 

ARX-transformation that contains eight additions 

modulo 232, eight additions modulo 2 and eight 

rotations. 

 

 

Figure 1 – Round function of Cypress-256 

 

3. METHODS FOR ESTIMATING ARX-
CIPHERS’ STRENGTH TO 

DIFFERENTIAL CRYPTANALYSIS 

Modulo addition in ARX-ciphers serves as the 

nonlinear operation, when round keys are usually 

entered using the XOR operation. Therefore, the 

cipher differential probability is determined by the 

probabilities of differences’ propagation (calculated 

using the XOR operation) through modulo 

addition [15]. The module size is quite large 

compared with the size of S-boxes (typically 232-

264), which, in terms of computational complexity, 

makes it impossible to construct a complete 

difference distribution table. Determining the 

minimum number of active branches is also a 

complicated task, since the alternation of simple 

(nonlinear and linear) operations, which is not based 

on a strong mathematical background, is difficult in 

terms of the analysis of its cryptographic properties.  

A round of an ARX-cipher can contain several 

alternating linear and non-linear operations, while 

key-whitening is applied only at the beginning of 

each round. According to the classical theory [16], 

such a cipher is not a Markov cipher, because inputs 

to non-linear operations starting from the second one 

are not randomized by the key. Nevertheless, in the 

modern papers devoted to the differential 

cryptanalysis of ARX-ciphers the assumption that a 

cipher is a Markov cipher is made, and the 

probability of one-round differential characteristic is 

calculated as a product of probabilities of 

differences’ propagation through the non-linear 

operations [15]. Such an assumption will not have a 

significant effect on the evaluation result, but greatly 

simplify the evaluation process (even so the single 

examples when a cipher behaves as a non-Markov 

cipher are presented in literature [17]). In any case, 

currently, it is unknown how to calculate the 

differential probability in case of the assumption that 

a cipher is not a Markov cipher. The results 

presented in this paper are also based on the 

assumption that the block cipher Cypress-256 is a 

Markov cipher. 

An approach to design of ARX-ciphers which are 

provably secure against differential (linear) 

cryptanalysis was presented in [18]. When a wide 

trail strategy is applied to block ciphers based on S-

boxes, a so-called long trail strategy is proposed for 

ARX-ciphers. A new strategy proposes to use S-

boxes along with simple linear operations [18]. The 

application of the proposed approach to SPARX 

cipher allowed obtaining the estimation of the upper 

bound for SPARX differential probability. 

Concerning estimation of existing ARX-ciphers, 

nowadays, there is no universal method for 

estimation of the upper bound of differential 

characteristic probability for ARX-ciphers. The 

existing estimation methods are usually based on the 

results of application of heuristic algorithms of 

searching for the best differential 

characteristics [15, 17]. The most known such 

methods are: 

− the modified Matsui algorithm with 

application of partial difference distribution 

tables [15], the most developed among the existing 

methods;  

− the method based on a search for probabilistic 

neutral bits [19] (currently it is applied to the stream 

ciphers Salsa and ChaCha);  
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− the method based on SAT solvers [17], which 

was also applied to Salsa.  

The method based on application of partial 

difference distribution tables is the most used [15].  

A difference distribution table (DDT) for the 

addition of n-bit words modulo 2n contains the 

probabilities of transition of two input differences 

into the output difference after propagating through 

the non-linear operation. 

Definition 1 [15, 20]. Let α, β and γ be fixed n-

bit XOR differences. The XOR differential 

probability of addition modulo 2n is the probability 

with which α and β propagate to γ through the 

addition operation, computed over all pairs of n-bit 

inputs (x, y): 
 

( ) ( )

( ) ( )( ) ( )

2xdp , 2 # , :

.

n x y

x y x y

  

  

+ −→ = 

 +   + =
 (1) 

 

Calculation of probability by looking over all 

input pairs even for one transition is a 

computationally hard task. An effective algorithm 

for xdp+
 calculation is proposed in [21].  

Even by application the effective algorithm 

because of the large size of module n the full DDT 

cannot be calculated in practice within a reasonable 

time. That’s why in [15] authors propose to build a 

so-called partial DDT that contains differentials 

( , )  →  with the probability which is equal to 

or exceeds the given threshold thresp  [15]: 

 

 
(2) 

 

Then it is proposed to build such a partial table 

for the whole round function and, using the modified 

Matsui algorithm, search for differential 

characteristics. This method was successfully 

applied to block cipher based on Feistel network 

with ARX-like round function: SPECK, TEA, etc. 

The method described above is more suited to 

ciphers with a fairly simple round function, which 

does not assume the division of the input value into 

words (for example, for most well-known 

lightweight cryptography algorithms [22-33]). This 

is explained by the fact that when themodulo 

addition and rotation operations are applied to the 

whole input value, constructing partial DDT for such 

a round function is simple enough. 

 

4. BASIC ASSUMPTIONS CONCERNING 
THE DIFFERENTIAL CRYPTANALYSIS 

OF CYPRESS-256 

Define the difference between a pair of texts by 

XOR operation (⊕) and denote the addition modulo 

232 as ⊞. Let us introduce the following 

assumptions. 

Assumption 1. Cypress block cipher is a Markov 

cipher, so: 

1) The probability of one-round differential 

characteristic averaged over keys 
(1)EDP ( )  is 

equal to the product of probabilities of differences’ 

transformations while propagating through eight 

modulo additions: 
 

( ) ( )
8

(1)

1

EDP xdp , ,i i i

i

  +

=

 = →  (3) 

 

where ( , )i i  −  the differences at the input of i-th 

adder, i −  the difference at the output of i-th adder. 

2) The probability of r-round differential 

characteristic averaged over keys is defined by the 

product of probabilities of one-round differential 

characteristics [16]. 

Let ( )1 2, ,..., r    be a set of one-round 

differential characteristics such that 

( ) ( ) ( )1 1 2 1 2 1, , , ,..., ,r r r     − =  =  =  

and ( )1, ,..., .r   =  Then the probability 

( )EDP ( )r   can be approximated as: 

 

 

(4) 

 

Assumption 1 arises from generally accepted 

assumptions which are made to simplify obtaining 

evaluations for ARX-ciphers [15,17]. 

Assumption 2. While calculating the output 

difference  , which is the result of transformation 

of the input differences   and   after propagation 

through the modulo addition operation, the output 

difference with the maximum probability is chosen: 
 

( ) ( ) , , xdp , max ,     += → =   (5) 

 

where  −  the set of all possible output differences 

for ( ), .     

In many cases, for a pair of input differences 

( , )   there are exist several output differences 

with the maximum probability. If there are not so 

many such differences (≈5-10), then differential 

trails for all possible variants are calculated. If 

max   is small enough, the number of output 

differences with the maximum probability can be too 

large (thousands and tens of thousands). Then a 

random sampling is made from the set of differences 

( , , ) ( , ) .thresD p       → 

( ) (1)

1

EDP ( ) EDP ( ).
r

r
i

i=

 = 
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which have the maximum probability, and 

differential trails are built only for chosen 

differences. 

Assumption 3. In Cypress-256 the input 

differences of one-round differential characteristics 

with high probability have a small Hamming weight, 

i.e., ≈3-7 active bits (which are in different words). 

Such an assumption is explained by the fact that 

input differences of the most probable transitions in 

DDT for modulo addition have a small number of 

active bits. Let us justify Assumption 3 in details. 

Definition 2. The number of active bits b in the 

difference ( , )   which enters the adder's input, is 

the number of “1” which is contained in .   

Consider a partial DDT for addition modulo 232 

that contains transitions with the probability 

( )xdp , 1 2.  + →   For the transitions with the 

probability ( )xdp , 1  + → =  (there are only 

four such transitions in DDT) the number of active 

bits in the output difference is equal to 1.b   Note 

that it is true for any n. 

For transitions with the probability 

( )xdp , 1 2  + → = (for 32n =  there are only 

744 such transitions) the number of active bits is 

limited by two, 2.b    

In [20] it is presented the expression that 

describes the connection between bit positions of the 

input and output differences. The upper bound of 

differential probability for modulo addition 

operation is defined as [20]: 
 

 Pr , 2 ,k   −→   (6) 

 

where      ( ) # : ,0 2 ,k i i i i i n  =  = =   −  

i.e., the number of bit positions excluding the most 

significant bit where the bits in differences , ,    

are not equal. 

Thereby, the minimization of the number of 

active bits in difference at the inputs of modulo 

adders increases the total probability of differential 

characteristic. In Cypress-256 the first three words 

of differences which are served at the input of the 

round function get on the entrance of modulo 

addition operation right away, and the fourth word – 

after application of XOR and rotation, so the 

assumption about a small number of active bits at 

the input of the round function is rationale.  

Taking into account the influence of linear 

operations on the process of active bits distribution, 

it is assumed that 1-2 active bits at the input of the 

round function will spread well between different 

words at the output. The experiments have shown 

that 1 active bit at the input of the round function 

transfers into at least 7 active bits at the output (see 

Table 1). However, several active bits in different 

words can be destroyed by applying linear 

operations. So, approximately 3-7 active bits at the 

input of the round function which are distributed 

between different words allow obtaining a 

differential characteristic with high probability 

because they provide the optimal distribution of 

active bits to maximize the probabilities of 

transformations at modulo adders. 

Table 1. The results of distribution of active bits for 

the round function of Cypress-256 block cipher 

128-bit input 

difference 

(1 denotes the word 

which contains 

active bits) 

Number of active bits at the 

output of the round function 

Lower 

bound 
Upper bound 

1000 14 14 

0100 19 19 

0010 7 7 

0001 10 10 

1100 5 33 

0110 12 26 

0011 3 17 

0101 9 29 

1010 7 21 

1001 4 24 

1110 2 40 

1101 5 43 

1011 3 21 

0111 2 36 

 

5. SEARCHING FOR HIGH-PROBABLE 
MULTI-ROUND DIFFERENTIAL 

CHARACTERISTICS OF CYPRESS-256 

In Cypres-256 a 128-bit input of the round 

function is divided to 32-bit words that pass through 

many additions, so partial DDT should contain 

differential with a low enough probability. Besides 

that the number of differential trains increases with 

each round. It seems it is more efficient not to build 

partial DDT, but calculate probabilities on-the-fly 

using the algorithm proposed in [21]. 

Several methods of searching for the most 

probable one-round differential characteristics of 

Cypress-256 are presented in [14]. The optimized 

method allowed obtaining one-round differential 

characteristic with probability ¼. Now we present 

the methods of searching for multi-round differential 

characteristics of Cypress-256 and the results of 

their applications. 

The goal of search for differential characteristics 

is to find high-probable differential trails and prove 

that the probability of the best found (r-1)-round 

differential characteristic is 
( 1)EDP ( ) 2 ,r k−    

where k is the key length. For Cypress-256 it is 
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proposed to build a sufficiently big set of one-round 

differential characteristics and search for possible 

combinations of one-round characteristics into 

multi-round ones. The method consists of the 

following steps. 

1) Building the set of input differences   which 

will be used for building one-round characteristics 

according to Assumption 3. Include to the set   all 

possible combinations of 128-bit strings with a 

Hamming weight of 1-7 bits (128 is the length of the 

half block which is the input of the round function). 

Since we are interested in not only the most probable 

characteristics, the differences with a Hamming 

weight of 1-3 bits are also included to the set.  

2) Building one-round differential characteristics 

for input differences from the set .  Calculating 

output differences obtained after propagating the 

modulo addition operation according to Assumption 

2. Calculating the probability 
(1)EDP ( )  of one-

round differential characteristic according to item 1 

of Assumption 1. Note that for one input difference, 

usually, there are several differential characteristics.  

3) Taking into account that the key length is 256 

bits and the number of encryption rounds is 10, from 

all calculated differential characteristics include to 

the set   those that have the probability 
(1) 256 10 26EDP ( ) 2 2 .thres

− −    

4) If for input differences with some Hamming 

weight the calculation of all differential 

characteristics requires significant computational 

resources, then decrease the value 
(1)

EDP ( )thres   for 

differential characteristics built for input differences 

with this Hamming weight. 

5) Searching for combinations of one-round 

differential characteristics from the set   into two-

round (multi-round) ones.  

Using available computational resources, the set 

  that contains high-probable one-round 

differential characteristics was built. The results of 

constructing the set are presented in Table 2. 

Table 2. The parameters of the set of high-probable 

one-round differential characteristics 

Input 

difference 

Hemming 

weight 

1 2 3 4 5 6 

1

2

( )

EDP ( ),

log

thres

n


 

-26 -26 -26 -26 -18 -10 

1

2

( )
MEDP ( ),

log n


 > -26 -14 -12 -6 -2 -3 

 

Differential characteristics built for input 

differences with a Hamming weight of 4-6 bits have 

the high probability. Some of the obtained high-

probable one-round differential characteristics are 

presented in Table 3. 

Table 3. The most probable one-round differential 

characteristics of Cypress-256 

Input – output differences in 32-bit 

words, hex  

(1)

2

EDP ( ),

log n



 

0 80000000 800000 80008080 – 

80000000 4000 80 80 
-2 

80000 80080000 80000000 80000000 –  

800 4040040 80080000 80000 
-3 

0 80000000 1800000 80008080 – 

80000000 4000 80 80 
-3 

180000 80080000 80000000 80000000 – 

800 4040040 80080000 80000 
-4 

80000 80000 80800000 8080 – 

80000800 4044040 80080080 80080 
-5 

80000000 0 80000000 80008000 – 

88000000 40404404 808088 800088 
-6 

80000000 80000000 80800000 80 – 

8000000 40400404 808008 800008 
-6 

80 80 80000080 8000 – 

8 40040440 80800800 80000800 
-7 

8000 8000 8080 800000 – 

800 4044040 80080080 80080 
-7 

80000000 80000800 800 800 –  

800000 40040040 80000800 80000000 
-7 

0 80 80000000 808080 – 

80 400000 8000 8000 
-7 

0 800000 8000 80800080 – 

800000 40 80000000 80000000 
-7 

80000000 80000000 81800000 80 – 

8000000 40400404 808008 800008 
-7 

0 100 1 1010100 – 

100 800000 10000 10000 
-8 

0 200 2 2020200 – 

200 1000000 20000 20000 
-8 

0 800 8 8080800 –  

800 4000000 80000 80000 
-8 

0 1000 10 10101000  – 

1000 8000000 100000 100000 
-8 

0 8000 80 80808000 – 

8000 40000000 800000 800000 
-8 

180 80 80000080 8000 – 

8 40040440 80800800 80000800 
-8 

100 80 80000000 808080 –  

80 400000 8000 8000 
-8 

8000 8000 8180 800000 – 

800 4044040 80080080 80080 
-8 

0 40 c0000000 404040 – 

40 200000 4000 4000 
-8 

0 800000 18000 80800080 – 

800000 40 80000000 80000000 
-8 

0 40000000 80400000 40004040 – 

40000000 2000 40 40 
-8 

Despite some characteristics have the input difference which matches the output difference of 
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other differential characteristics, no combinations of 

one-round characteristics in two-round ones were 

found.  

The next step in searching for multi-round 

characteristics includes extending one-round 

differential characteristics from the set   to several 

rounds. Note that Feistel network architecture 

feature allows selecting the input difference so as to 

“skip” one encryption round, i.e., creating such a 

situation when at the certain round the value 

0,X =  which transformation probability is 1, is 

served as the input to the round function.  

In order to maximize the probability of 

differential characteristic for the first three 

encryption rounds, it is proposed to submit X  as a 

left half of the input difference and ( )Y F X =  −  

as a right half. Because of this, the probability of 

differential characteristics for the first and the third 

rounds will be equal, and for the second round – will 

be equal to 1. The trail of propagating the input 

difference through 4 encryption rounds is presented 

in Fig. 2. 

 

 

Figure 2 – Path of the input difference propagation 

for four encryption rounds  

 

So, the search for the most probable multi-round 

differential characteristics of Cypress-256 consists 

of the following steps. 

1) Define 256-bit input difference as such that 

consists of two 128-bit halves X  and .Y   

2) Construct the set   of 256-bit input 

differences for searching the multi-round differential 

characteristics in the following way. Define the 

input difference i  form the set   as 

( )| ,i i iX Y =    where iX  and iY −  input and 

output differences of i-th differential characteristic 

from the set   correspondingly. 

3) For each input difference i  from the set   

build differential characteristics for j rounds 

provided that 
( ) 256EDP ( ) 2 .j −   Build the 

differential characteristic for each round according 

to the items (2)-(4) from the method presented 

above. 

During the search, the random sampling 

mechanism was applied in two cases: 

- while calculating output differences for 

modulo addition operation; 

- while choosing the output of the round 

function between encryption rounds. 

Due to the application of random sampling, 
( )EDP ( )j   is an approximated value (calculation 

of all existing differential trails is a computationally 

hard task even for one input difference). 

Using the described approach, one of the most 

probable differential characteristics with the 

following parameters was found: 

 

1 round:  ( , )a b = (00000000 80008000 00800080 

00800080 80008000 40004000 00800080 00800080, 

00000000 80008000 00800080 00800080 00000000 

00000000 00000000 00000000), 
(1)

2log EDP ( ) 10, = − (1)

2log EDP ( ) 10; = −  

 

2 round:  ( , )a b = (00000000 00000000 00000000 

00000000 00000000 80008000 00800080 00800080, 

00000000 00000000 00000000 00000000 00000000 

80008000 00800080 00800080), 
(1)

2log EDP ( ) 0, = (2)

2log EDP ( ) 10; = −  

 

3 round:  ( , )a b = (00000000 80008000 00800080 

00800080 00000000 00000000 00000000 00000000, 

00000000 80008000 00800080 00800080 80008000 

40004000 00800080 00800080), 
(1)

2log EDP ( ) 10, = − (3)

2log EDP ( ) 20; = −  

 

4 round:  ( , )a b = (80008000 40004000 00800080 

00800080 00000000 80008000 00800080 00800080, 

80008000 40004000 00800080 00800080 c0204020 

90009000 00a000a0 00800080), 
(1)

2log EDP ( ) 27, = − (4)

2log EDP ( ) 47; = −  

5 round:   = (c0204020 90009000 00a000a0 

00800080 80008000 40004000 00800080 00800080, 
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c0204020 90009000 00a000a0 00800080 5208d204 

40444044 08820882 0a800a80),    
(1)

2log EDP ( ) 74, = − (5)

2log EDP ( ) 121; = −  

 

6 round:   = (5208d204 40444044 08820882 

0a800a80 c0204020 90009000 00a000a0 00800080, 

5208d204 40444044 08820882 0a800a80 266e7071 

a74313f2 0088e7e0 10fa6fd2),     
(1)

2log EDP ( ) 102, = − (6)

2log EDP ( ) 223. = −  

 

So, the most probable differential characteristic 

found for 6 rounds has the probability 
(6) 223MEDP ( ) 2 .−   

Due to using the random sampling, 
(6)MEDP ( )  can a bit vary in different 

experiments, but it does not sufficiently influence on 

the result because  

 

 
(7) 

 

6. CONCLUSION 

The block cipher Cypress-256 is resistant to 

differential cryptanalysis according to the 

requirements of practical criterion. One of the most 

probable differential characteristics was found for 6 

rounds of Cypress-256 and has the probability 
(6) 223MEDP ( ) 2 .−   

The experiments show that one-round 

differential characteristics, which output 

differences have a small Hamming weight (and, 

respectively, a high probability), cannot be 

extended to build a high-probable multi-round 

differential characteristic. 

Research results can be useful for analyzing 

and evaluating the effectiveness of lightweight 

encryption algorithms, as well as in other 

practically important applications [34-41]. 

 

7. REFERENCES 

[1] R. Oliynykov et al., “A new encryption 

standard of Ukraine: The Kalyna block 

cipher,” IACR Cryptology ePrint Archive, 

2015, 650.  

[2] Pub, NIST FIPS. “197: Advanced encryption 

standard (AES),” Federal Information 

Processing Standards Publication, 197.441: 

0311, 2001. 

[3] I. Gorbenko, A. Kuznetsov, M. Lutsenko and 

D. Ivanenko, “The research of modern stream 

ciphers,” Proceedings of the 2017 4th IEEE 

International Scientific-Practical Conference 

Problems of Infocommunications. Science and 

Technology (PIC S&T), 2017, pp. 207-210. 

[4] O. Kuznetsov, M. Lutsenko and D. Ivanenko, 

“Strumok stream cipher: Specification and 

basic properties,” Proceedings of the 2016 

Third IEEE International Scientific-Practical 

Conference Problems of Infocommunications 

Science and Technology (PIC S&T), Kharkov, 

2016, pp. 59-62. 

[5] N. Mouha, “The design space of lightweight 

cryptography,” Proceedings of the NIST 

Lightweight Cryptography Workshop, 2015, 

pp. 1-19. 

[6] A. Kuznetsov, Y. Gorbenko, A. 

Andrushkevych and I. Belozersev, “Analysis 

of block symmetric algorithms from 

international standard of lightweight 

cryptography ISO/IEC 29192-2,” Proceedings 

of the 2017 4th IEEE International Scientific-

Practical Conference Problems of 

Infocommunications. Science and Technology 

(PIC S&T), Kharkov, 2017, pp. 203-206. 

[7] Lightweight Cryptography. Project Overview 

[Online]. Available at: https://csrc.nist.gov/ 

projects/lightweight-cryptography 

[8] A. Andrushkevych, Y. Gorbenko, O. 

Kuznetsov, R. Oliynykov, M. Rodinko, “A 

prospective lightweight block cipher for green 

IT engineering,” in: Kharchenko V., 

Kondratenko Y., Kacprzyk J. (eds) Green IT 

Engineering: Social, Business and Industrial 

Applications. Studies in Systems, Decision 

and Control, Springer, Cham, vol 171, 2019, 

pp. 95-112. DOI: 10.1007/978-3-030-00253-

4_5 

[9] R. Beaulieu et al., “The SIMON and SPECK 

lightweight block ciphers,” Proceedings of the 

2015 52nd ACM/EDAC/IEEE Design 

Automation Conference (DAC), 2015, pp. 1-6. 

[10] D. J. Wheeler and R. M. Needham, “TEA, a 

Tiny Encryption Algorithm,” Proceedings of 

the International Workshop on Fast Software 

Encryption, Springer, Heidelberg, 1995, pp. 

363–366. 

[11] D. Hong, et al., “LEA: A 128-bit block cipher 

for fast encryption on common processors,” 

Proceedings of the International Workshop on 

Information Security Applications, Springer, 

Cham, 2013, pp. 3-27. 

[12] A. Kuznetsov, R. Serhiienko, D. 

Prokopovych-Tkachenko, and Yu. Tarasenko, 

“Evaluation of algebraic immunity of modern 

block ciphers,” Proceedings of the 2018 IEEE 

9th International Conference on Dependable 

Systems, Services and Technologies 

(DESSERT), 2018, pp. 288-293. 

(7) 256MEDP ( ) 2 ,7 ( 1).r−   −

https://csrc.nist.gov/%20projects/lightweight-cryptography
https://csrc.nist.gov/%20projects/lightweight-cryptography


Mariia Rodinko, Roman Oliynykov, Khalicha Yubuzova / International Journal of Computing, 19(2) 2020, 273-281 

 

 280 

[13] M. Rodinko, R. Oliynykov, Yu. Gorbenko, 

“Optimization of the high nonlinear S-boxes 

generation method,” Tatra Mountains 

Mathematical Publications, vol. 70, no. 1, pp. 

93-105, 2017. 

[14] M. Rodinko, R. Oliynykov and R. Eliseev, 

“Search for one-round differential 

characteristics of lighweight block cipher 

Cypress-256,” Proceedings of the 2018 IEEE 

9th International Conference on Dependable 

Systems, Services and Technologies 

(DESSERT), 2018, pp. 312-315. 

[15] A. Biryukov, V. Velichkov, “Automatic 

search for differential trails in ARX ciphers,” 

CT-RSA, vol. 8366, pp. 227-250, 2014. 

[16] X. Lai, J. L. Massey and S. Murphy, “Markov 

ciphers and differential cryptanalysis,” 

Proceedings of the Workshop on the Theory 

and Application of of Cryptographic 

Techniques, Springer, Berlin, Heidelberg, 

1991, pp. 17-38. 

[17] N. Mouha,, and B. Preneel, “Towards finding 

optimal differential characteristics for ARX: 

Application to Salsa20,” Cryptology ePrint 

Archive, Report 2013/328, 2013. 

[18] D. Dinu et al., “SPARX: A family of ARX-

based lightweight block ciphers provably 

secure against linear and differential attacks,” 

Proceedings of the ASIACRYPT'16, pp. 1-21, 

2016. 

[19] J. P. Aumasson et al., “New features of Latin 

dances: analysis of Salsa ChaCha and 

Rumba,” Lecture Notes in Computer Science, 

vol. 5086, 2008, pp. 470-488. 

[20] H. Lipmaa, J. Wallén, and P. Dumas, “On the 

additive differential probability of exclusive-

or,” in: Roy, B.K., Meier, W. (eds.) 

Proceedings of the International Workshop on 

Fast Software Encryption, Lecture Notes in 

Computer Science, Springer, Berlin, 

Heidelberg, vol. 3017, 2004, pp. 317-331. 

[21] H. Lipmaa and S. Moriai, “Efficient 

algorithms for computing differential 

properties of addition,” Proceedings of the 

International Workshop on Fast Software 

Encryption, Springer, Berlin, Heidelberg, 

2001, pp. 336-350. 

[22] B. Liu, L. Li, R. Wu, M. Xie and Q. P. Li, 

“Loong: A family of involutional lightweight 

block cipher based on SPN structure,” IEEE 

Access, vol. 7, pp. 136023-136035, 2019. 

[23] D. Sehrawat, N. S. Gill and M. Devi, 

“Comparative analysis of lightweight block 

ciphers in IoT-enabled smart environment,” 

Proceedings of the 2019 6th International 

Conference on Signal Processing and 

Integrated Networks (SPIN), Noida, India, 

2019, pp. 915-920. 

[24] I. Khairullin and V. Bobrov, “On 

cryptographic properties of some lightweight 

algorithms and its application to the 

construction of S-boxes,” Proceedings of the 

2019 IEEE Conference of Russian Young 

Researchers in Electrical and Electronic 

Engineering (EIConRus), Saint Petersburg 

and Moscow, Russia, 2019, pp. 1807-1810. 

[25] E. Marsola do Nascimento and J. A. Moreira 

Xexeo, “A flexible authenticated lightweight 

cipher using Even-Mansour construction,” 

Proceedings of the 2017 IEEE International 

Conference on Communications (ICC), Paris, 

2017, pp. 1-6. 

[26] R. S. Mahantesh and S. Mohapatra, “Design 

of secured block ciphers PRESENT and 

HIGHT algorithms and its FPGA 

implementation,” Proceedings of the 2018 

Second International Conference on 

Intelligent Computing and Control Systems 

(ICICCS), Madurai, India, 2018, pp. 1113-

1118. 

[27] S. Kotel, F. Sbiaa, M. Zeghid, M. Machhout, 

A. Baganne and R. Tourki, “Performance 

evaluation and design considerations of 

lightweight block cipher for low-cost 

embedded devices,” Proceedings of the 2016 

IEEE/ACS 13th International Conference of 

Computer Systems and Applications 

(AICCSA), Agadir, 2016, pp. 1-7. 

[28] O. Kara and M. F. Esgin, “On analysis of 

lightweight stream ciphers with Keyed 

update,” IEEE Transactions on Computers, 

vol. 68, issue 1, pp. 99-110, Jan. 2019. 

[29] M. Yoshikawa, Y. Nozaki and K. Asahi, 

“Vulnerability evaluation accelerator for 

lightweight ciphers,” Proceedings of the 2016 

IEEE 2nd International Conference on Big 

Data Security on Cloud (BigDataSecurity), 

IEEE International Conference on High 

Performance and Smart Computing (HPSC), 

and IEEE International Conference on 

Intelligent Data and Security (IDS), New 

York, NY, 2016, pp. 377-381. 

[30] M. A. Philip and Vaithiyanathan, “A survey 

on lightweight ciphers for IoT devices,” 

Proceedings of the 2017 International 

Conference on Technological Advancements 

in Power and Energy ( TAP Energy), Kollam, 

2017, pp. 1-4. 

[31] C. A. Lara-Niño, M. Morales-Sandoval and 

A. Díaz-Pérez, “An evaluation of AES and 

present ciphers for lightweight cryptography 

on smartphones,” Proceedings of the 2016 

International Conference on Electronics, 



Mariia Rodinko, Roman Oliynykov, Khalicha Yubuzova / International Journal of Computing, 19(2) 2020, 273-281 

 

 281 

Communications and Computers 

(CONIELECOMP), Cholula, 2016, pp. 87-93. 

[32] B. J. Mohd and T. Hayajneh, “Lightweight 

block ciphers for IoT: Energy optimization 

and survivability techniques,” IEEE Access, 

vol. 6, pp. 35966-35978, 2018. 

[33] C. Zhao, Y. Yan and W. Li, “An efficient 

ASIC Implementation of QARMA 

lightweight algorithm,” Proceedings of the 

2019 IEEE 13th International Conference on 

ASIC (ASICON), Chongqing, China, 2019, pp. 

1-4. 

[34] C. A. Lara-Nino, M. Morales-Sandoval and 

A. Diaz-Perez, “Novel FPGA-based low-cost 

hardware architecture for the PRESENT block 

cipher,” Proceedings of the 2016 Euromicro 

Conference on Digital System Design (DSD), 

Limassol, 2016, pp. 646-650. 

[35] K. Runovski, H.-J. Schmeisser, “On the 

convergence of fourier means and 

interpolation means,” Journal of 

Computational Analysis and Applications, 

vol. 6, issue 3, pp. 211-227, 2004. 

[36] B. P. Tkach, & L. B. Urmancheva, 

“Numerical-analytic method for finding 

solutions of systems with distributed 

parameters and integral condition,” Nonlinear 

Oscillations, vol. 12, issue 1, pp. 113-122, 

2009. doi:10.1007/s11072-009-0064-6 

[37] R.K. Chornei, V.M. Hans Daduna, P.S. 

Knopov, P. “Controlled Markov fields with 

finite state space on graphs,” Stochastic 

Models, vol. 21, issue 4, pp. 847-874, 2005. 

doi:10.1080/15326340500294520 

[38] L. Dalmasso, F. Bruguier, P. Benoit and L. 

Torres, “Evaluation of SPN-based lightweight 

crypto-ciphers,” IEEE Access, vol. 7, pp. 

10559-10567, 2019. 

[39] I. K. Dutta, B. Ghosh and M. Bayoumi, 

“Lightweight cryptography for Internet of 

insecure things: A survey,” Proceedings of the 

2019 IEEE 9th Annual Computing and 

Communication Workshop and Conference 

(CCWC), Las Vegas, NV, USA, 2019, pp. 

0475-0481. 

[40] A. Heuser, S. Picek, S. Guilley and N. 

Mentens, “Lightweight ciphers and their side-

channel resilience,” IEEE Transactions on 

Computers, pp. 1-20, 2020. 

[41] N. A. Gunathilake, W. J. Buchanan and R. 

Asif, “Next generation lightweight 

cryptography for smart IoT devices: 

Implementation, challenges and applications,” 

Proceedings of the 2019 IEEE 5th World 

Forum on Internet of Things (WF-IoT), 

Limerick, Ireland, 2019, pp. 707-710. 

 

 

 

Mariia Rodinko, PhD student at 
Information Systems and 
Technologies Security 
Department at V.N. Karazin 
Kharkiv National University. 
Scientific interests: block ciphers 
analysis and development.  

 

 

Roman Oliynykov, a Professor 
at Information Systems and 
Technologies Security Depart-
ment at V.N. Karazin Kharkiv 
National University. Scientific 
interests: analysis and 
development of symmetric 
primitives, software security, 
blockchain. 

 

 

Khalicha Yubuzova, Master of 
Technical Sciences, a Lecturer 
of the Academic Department 
"Cybersecurity, Information 
Processing, and Storage" at the 
Satbayev University (Almaty, 
Kazakhstan). Research inte-
rests: information security, cryp- 

tography, QKD, network technologies. 
 

 


