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Abstract: Strong cryptography of stream ciphers is determined according to the 

ability of the generated pseudorandom sequence to resist analytical attacks. One 

of the main components of the pseudorandom stream cipher sequence generating 

algorithm is Boolean functions for combining and filtering. The paper considers 

the possibility of applying nonlinear-feedback shift registers that generate a 

maximum length sequence as a combining or filtering function. The main 

indicators of cryptographic strength of such functions as: balance, the 

prohibitions presence, correlation immunity and nonlinearity are examined in 

this work. The study analyzes and demonstrates correlation immunity and 

nonlinearity experimental values for all nonlinear feedback shift registers that 

generate a maximum length sequence, for register sizes up to 6 cells inclusively, 

and register sizes up to 9 cells inclusively with algebraic degree of the 

polynomial under 2. The possibility of optimizing the process of selecting 

Boolean functions according to the criteria of maximum correlation immunity 

and nonlinearity with various algebraic degrees and minimization of the number 

of monomials in the polynomial is studied.  

Copyright © Research Institute for Intelligent Computer Systems, 2020.  

All rights reserved. 

 

 

1. INTRODUCTION 

1.1 RESEARCH MODEL 

In the general block diagram of a combination 

generator (Fig. 1) and filter generator (Fig. 2) of the 

pseudorandom sequence (PRS) that use several 

linear-feedback shift registers (LFSR) or nonlinear-

feedback shift registers (NLFSR), – 

),,1( LiSRi = ), the function f  
is usually 

considered either a combination or a filtering 

function of L  variables. 

In general, a Boolean reflection 22: GFGFf L →  

is a Boolean function that corresponds to NLFSR. 

Boolean functions will be represented in the form of 

polynomials (a Zhegalkin polynomial or an 

algebraic normal form - ANF) in a field 2F : 
 





=

Ni

iN
LPN

L xaxxf
},,2,1{

1 ),(


 , (1) 

 

where },,2,1{ LP   is the set of all subsets 

},,2,1{ L  (Boolean), 2FaN  . 

 

Figure 1 – Block diagram of a combination PRS 

generator 
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Figure 2 – Block diagram of a filter PRS generator 

 

The paper will investigate only those NLFSRs 

that form a modified de Bruijn sequence (which is 

the maximum length sequence, i.e., M-sequence). 

Such nonlinear registers are denoted as M-NLFSR. 

 

1.2 THE STUDIED CRYPTOGRAPHIC 
PROPERTIES OF M-NLFSR 

In this particular case, some of the main 

indicators of cryptographic stability evaluation 

examined are: 

 Balance.  

Boolean function f  of L  variables is called 

balanced if the function takes values 0 and 1 with 

equal frequency. This is one of the most natural 

properties of the Boolean functions that are used in 

stream ciphers [1]. 

If the Boolean function is balanced, then the 

probability will take a value of 0 or 1 that is the 

same and equals 1/2. This allows us to reduce the 

statistical dependencies between the function input 

and output. In other cases, the analyst has the 

possibility to cryptanalyze the cipher using the 

distribution of all relations. 

 Prohibition presence 

The PRS analysis that is generated by the 

filtering generator causes a Boolean function 

prohibition, i.e., the presence of the initial sequence 

combinations, which is prohibited in every 

combination of the input sequence. 

It is intuitively clear that the presence of a 

prohibition in the filtering function of the generator 

makes it "weaker", this prohibition will never appear 

in the initial sequence of the generator, which 

impairs its statistical properties. 

 Correlation immunity. 

The correlative immune function requirement is 

related to the correlation attack counteraction, the 

idea of which is as in [2]. In a combination PRS 

generator (Fig. 1) the key to the generator is the 

initial state of all registers. The key volume equals to 
Lll ++12 , where il  is the length of iSR  for 

Li ,,1= . 

Each of the iSR  generates 21

iii xxx =  

sequence that is usually close to the random one in 

regard to its properties. In particular, with a fairly 

large sequence length for its randomly selected bit 
j

ix (where j  in 
j

ix is the number of the bit in the 

sequence 
ix ), there is a probability of a random event 

0=j

ix : 2/1]0P[ =j

ix . Thus, if 21 yyy =  is a 

random sequence that does not depend on ix , then 
 

( ) 21]1P[]0P[21

]1P[]1P[

]0P[]0P[]P[

==+=

==+

+====

jj
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i

yy

yx
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Let us assume, that 2/1]P[ 1 = xf  (in this 

case it is said that the function f correlates with the 

variable 
1x ). Using a correlation attack, the initial 

state of 
1s  

1SR  can be found. To do so, one should 

go over all the possible 12
l

 of the 
1SR  states, for 

each of them a sequence 21zzz =  is created and 

the number of matches with PRS ii zz =  is counted. 

For all sequences, except for one (generated by 
1s ), 

a part of matches will be 2/1 . By that we define 

that the part of the key is the 
1s  state. If the function 

f  has a correlation with all its variables (or with all 

but one - then the state of the register corresponding 

to this variable, will be found the last, with the 

information about all other registers’ state), then the 

generator key is found in Lll
22 1 ++  tries, which 

is much less complicated. 

 Nonlinearity. 

In practice [3-5] the cryptographic 

transformations, which have properties close to 

those of linear functions, in many cases lead to a 

significant decrease in the cipher stability. That is 

why, the functions, whose properties exclude the 

weaknesses typical of the functions close to the 

linear ones, play an important role in cryptography. 

Thus, the desired property of a function is its 

nonlinearity that is given a broad meaning: as an 

opposition to linearity. In block and stream ciphers, 

the application of a high nonlinearity function 

increases the cipher stability in regard to the linear 

and differential cryptanalysis methods.  

 

1.3 PROBLEM STATEMENT 

A lack of description of different cryptographic 

properties connection is observed in literature. In 

work [1], as cipher components, it is necessary to 

choose the functions that are “good from every 

side”, which in reality is a very difficult task, since 

many properties contradict each other. Although the 

theoretical results show that in a random function, 

many cryptographic parameters are close to optimal 

ones. The question is how to choose it? 

In addition to optimizing cryptographic 

performance, in practical implementation it is 
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necessary to take into account the simplicity of 

implementation (both software and hardware). The 

less resources (memory, the number of simple 

operations - in software implementation; the logical 

elements and the possibility of their parallelization - 

in hardware) are spent by the algorithm to form the 

next bit, the higher is the possibility to get a faster, 

cheaper in manufacturing, and less energy-

consuming final product. 

The work can be viewed as an extension of the 

materials obtained by the authors and stated in [3-5] 

for the case of using ANF with nonlinearity of a 

random order. The results presented in [3-5] are 

given here for integrity.  

The article analyzes the possibility of using M-

NLFSR as either a combination or filtering function. 

It also studies the problem of M-NLFSR selection 

optimization by the criteria of maximum correlation 

immunity and nonlinearity at different algebraic 

degrees, as well as the possibility of minimizing the 

number of monomials used. 

 

1.4 DEFINITIONS USED 

2F  – the final field of two elements, 0 and 1. 

LV  – L -dimensional vector space over the 2F  

field, 
L

L FV )( 2= . Addition in space LV  bitwise 

exclusive disjunction.  

LL aaaaA
21221 ,,,,

−
= 

 
is a sequence with the 

length 
L2  from the elements of the alphabet }1,0{ . 

A  is a de Bruijn sequence of order L  if among 

all the tuples with the length L : ),,,( 21 Laaa  , 

),,,( 132 +Laaa  , …, each of the possible tuples is 

present and occurs exactly once, i.e., all possible 
L2  

combinations of the alphabet }1,0{  are present [6]. 

Similar sequences ( 12 −L
) without tuples from 

only zeros are called the modified de Bruijn 

sequences. 

The degree of a monomial (a Boolean monomial) 




=
Ni

i

N xx is defined as N  (the number of 

elements of the  subset N ). 

The algebraic degree ( )fdeg or the degree of 

nonlinearity of a Boolean function f is the number 

of variables in the longest addend (monomial) of its 

ANF. A Boolean function of 1 degree is called 

affine. Its ANF looks like 

 

bxaxaxaxf LL = 2211)( , (3) 

 

where 
LVaFb  ,2

. If 0=b then the function is 

called linear, and the corresponding shift register is 

LFSR. A function is called quadratic, cubic, etc., if 

its algebraic degree is 2, 3, etc., respectively. The 

function ( ) 1deg =f  is an affine function. The case 

of the affine function is 00 =a  according to the 

linear function. The set of affine Boolean functions 

from L variables is denoted as
LA . 

Hamming weight or simply the weight of a binary 

vector is the number of units among its components. 

The Hamming weight of a Boolean function is the 

weight of the vector of its values. The weight of a 

vector or function is denoted by )(xwt and )( fwt .
 

Hamming distance ),( gfdist between the two 

functions f  and g is the weight of the function 

gf  . In other words, it is the number of those 

LVx for which )()( xgxf   is true.  

Nonlinearity fN of a Boolean function f  is the 

Hamming distance between f and the set of affine 

functions. 

A “maximally nonlinear function” is such 

Boolean function of L  variables ( L  can equal 

anything) that the Hamming distance from a given 

function to the set of all affine functions is 

maximally possible. In case L  is even, the 

maximum possible value of nonlinearity equals 

(
1)2/(1 22 −− − LL
). In case L  is odd, the exact value of 

the maximum distance is unknown. The term 

“maximally nonlinear function” can be seen in 

Ukrainian literature, whereas in English, the term 

“bent function” is more typical. The analogy 

between the terms is not complete. For an even 

number of variables L , bent functions and 

maximally nonlinear functions coincide, however 

for an odd L , bent functions (unlike maximally 

nonlinear functions) do not exist. In addition, all 

bent functions are not balanced (unlike the functions 

of the corresponding M-NLFSR, as it will be shown 

below), which makes them vulnerable to statistical 

analysis. 
 

2. RESULTS 

2.1 BALANCE 

M-NLFSR, as does M-LFSR, generates a 

modified de Bruijn sequence, and if we add to the 

consideration the state of filling all cells with nulls, 

then the resulting function will be balanced. In the 

equally probable and independent selection of 

Boolean function f arguments, which forms the M-

NLFSR, the probabilities of its values, respectively, 

are equal  

 

( ) ( ) LfwtP 21 = ,  ( ) ( ) LfwtP 210 −= . 
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2.2 PROHIBITIONS PRESENCE 

M-NLFSR are functions that have no 
prohibitions. This is due to the fact that the NLFSR 

forms a de Bruijn sequence that, by definition, has 
all the possible combinations of sequence.  

However, one should be careful, since a fully 
balanced filtering function in one form or other 

transfers the properties of the input sequence to the 
generated sequence [7]. For example, in work [8], 

was established a new criterion, that states: "the 

filtering function preserves prohibitions (in the 
corresponding sense) only if it is completely 

balanced". Thus, if the input function enters a 
sequence "far" from a random one, then its statistical 

properties will be poor in the output. 
 

2.3 CORRELATION IMMUNITY 

The statements and theorems given in this and 

the next sections are aimed at reducing the amount 
of work, and are given without proof. The latter is 

public and is shown, for example, in [1-2, 9-11]. 
The presence of a correlative immune function of 

the degree m  means that the values of the function 

)(XfZ =  are statistically independent of any set 

from, at most, m  components of a random 

argument vector 
LFX )( 2= . This is equivalent to 

the condition that the output of the transformation 

does not include information about the vectors from 
the input of the transformation and that has a 

Hamming weight of no more than m . 

Boolean function f is called correlatively 

immune to the order m , Lm 1 , if for any set of 

numbers  m  of the variables  
 

Liii m  211
 

 

the random variables ( )
miii xxxX ,,,

21
=  and 

( )LxxxfY ,,, 21 =  are independent. 

The fact that the function, which is correlation 

immune to the order m  of the L variables is 

correlation immune to a random smaller order. Thus, 

the Boolean function f corresponds to some 

maximum order of its correlation immunity maxm , 

which is denoted by )f(cor .  

Lm = can only be true, if constf = . Only 

affine functions can reach the maximum correlation 

immunity of 1−= Lm  degree, i.e., 

cryptographically weak ones. In addition, if f  is 

balanced and 2)( −= Lfcor , then the function f  

is also affine. Thus, it makes sense to consider the 

order of correlation immunity m  only in the range 

of 31 − Lm .  

The balanced correlation-immune function of the 
order m  is called m -stable. Technically, any 

balanced Boolean function can be considered as a 0-

stable and a random Boolean function as (-1)-stable. 

Similarly to )f(cor  a denotation of the maximum 

stability order is introduced: 
 

1, if  is not balanced,
( )

( ), if  is balanced.

f
sut f

cor f f
 

 

Siegentaler’s inequality. If f  is a function in 

LF )( 2  that is correlation immune to order m , then: 

1. ( ) mLfdeg − ; 

2. if f is balanced and 2)( −= Lmfsut , then 

1)()( −+ Lfsutfdeg . 

Siegentaler’s inequality is one of many 

contradictions in the cryptographic properties of 
functions: the high order of the correlation immune 

function entails its low algebraic degree and vice 
versa. 

If the function f  is balanced,  

2)( −= Lmfsut  
and  1)deg( −−= mLf , 

then f  is called m -optimal. 

Thus, there are m -optimal f  for LFSR 

2)deg(1 −=−−= LfLm  and for the second-

order NLFSR 3)deg(1 −=−−= LfLm , etc. The 

value of the maximum stability order for m -optimal 

functions, depending on the length of the register 

and the algebraic degree, is given in Table 1. 

Table 1. The value of the maximum stability order for 

m -optimal functions 

 L  
3 4 5 6 7 8 9 

M-LFSR 1 2 3 4 5 6 7 

M-NLFSR 2nd order 0 1 2 3 4 5 6 

M-NLFSR 3nd order – 0 1 2 3 4 5 

M-NLFSR 4nd order – – 0 1 2 3 4 
 

Thus, we have defined the upper limit of values 
for m -resistant functions. The work investigated the 

correlation immunity of the entire M-NLFSR set 

sized 62  L  (the results are presented in Table 

2), as well as the M-LFSR and M-NLFSR 2nd order 

for 9L  (see Table 3). 

As it can be seen in Tables 2-3, M-NLFSR reach 

the values for the m -optimal functions (in the table 

these are designated as “m”) for all studied L . 
However, there is a very large proportion 

(approximately half of the entire 2nd order M-

NLFSR set if 97  L  and 2/3 if 6=L ), which 

has no correlation immunity. 
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Table 2. The distribution of the number of registers 

depending on the maximum stability for M-NLFSR 

)( fsut
 

Number 

of  

M-LFSR 

Number of 

2nd order 

M-NLFSR 

Number of 

3rd order 

M-NLFSR 

Number of 

4th order 

M-NLFSR 

2=L  

m=0 0 – – – 

m=1 1 – – – 

3=L  

m=0 0 – – – 

m=1 m 2 – – – 

4=L  

m=0 0 4 – – 

m=1 2 m 10 – – 

m=2 0 – – – 

5=L  

m=0 0 64 1024 – 

m=1 2 52 m 896 – 

m=2 0 m 6 – – 

m=3 m 4 – – – 

6=L  

m=0 0 788 1434988 44586880 

m=1 2 1044 640762 m 20424832 

m=2 0 76 m 19450 – 

m=3 4 m 38 – – 

m=4 0 – – – 

Table 3. The distribution of the number of registers 

depending on the maximum sustainability for M-

PCNOS if ( ) 2fdeg . 

)( fsut
 

Number of  

M-NLFSR 

Number of  

M-LFSR 

Number of  

2nd order  

M-NLFSR 

7=L  

m=0 33 988 0 33 988 

m=1 25 582 4 25 578 

m=2 4 090 0 4 090 

m=3 388 10 378 

m=4 4 0 m 4 

m=5 4 m 4 – 

8=L  

m=0 1 686 218 0 1 686 218 

m=1 2 120 124 0 2 120 124 

m=2 194 798 0 194 798 

m=3 16 624 12 16 612 

m=4 188 0 188 

m=5 46 4 m 42 

m=6 0 0 – 

9=L  

m=0 284 956 836 0 284 956 836 

m=1 208 843 950 2 208 843 948 

m=2 24 325 344 0 24 325 344 

m=3 1 091 584 16 1 091 568 

m=4 21 192 0 21 192 

m=5 876 28 848 

m=6 10 0 m 10 

m=7 2 m 2  

 

2.4 NONLINEARITY  

Nonlinearity of function f , as it is mentioned 

above, is the distance from f  to the class of affine 

functions 
LA : 

 

),(min),( gfdistAfdistN
LAg

Lf


== . (4) 
 

The following statements show that the higher 

the order of the correlation immune function is, the 

lower the top limit of its nonlinearity is. 

If f  is balanced and m -stable, 2− Lm . Then  
 

11 22 +− − mL

fN . 

 

Similarly, with the notion of the m -optimal 

function, a special name for the m -stable functions 

of the maximum possible nonlinearity is introduced. 

If the function f  with 
LF )( 2  is balanced,  

 

2)( −= Lmfsut  

 

and  
 

11 22 +− −= mL

fN , 

 

then f  is called m -saturated. 

Table 4 shows the calculated values of the 

formulas above with the maximum possible 

nonlinearity of the balanced function, depending on 

its stability. 
 

Table 4. Values of non-linearity of m-saturated 

functions depending on their maximum stability. 

 
)( fsut
 

0 1 2 3 4 5 6 

3=L  2 0 – – – – – 

4=L  6 4 0 – – – – 

5=L  14 12 8 0 – – – 

6=L  30 28 24 16 0 – – 

7=L  62 60 56 48 32 0 – 

8=L  126 124 120 112 96 64 0 

9=L  254 252 248 240 224 192 128 
 

However, the value of the nonlinearity given in 

Table 4 is not necessarily achievable. Let us denote 

a maximally possible nonlinearity of m -stable 

Boolean function given in 
LF )( 2 as 

),(max mLN f and provide the upper estimate for 

nonlinearity of m –resistant functions. 

Considering the above, it is clear that 
12/1

max 22)1,( −− −=− LL

f LN , this value can be 

achieved only for even L . If f  is a balanced 
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function and L  is even, it is true, that 
112/1

max 222),( +−− −−= mLL
f mLN  [2]. 

In [12] it is indicated that for odd L  and 7L , 
2/)1(1

max 22)1,( −− −=− LL

f LN , but for odd L  

and 15L  
2/)1(1

max 22)1,( −− −− LL

f LN  is true. 

When 2− Lm , according to Siegentaler’s 

inequality 1)deg( f , thus 0),(max =mLN f . Also 

[12] refers to the proved inequality 
2

max 2)3,( −=− L

f LLN and the hypothesis that 

31

max 22)4,( −− −=− LL

f LLN . In addition, some 

exact values of ),(max mLN f  are given for small L  

and m : 
 

4)0,4(max =fN ; 

12)1,5()0,5()1,5( maxmaxmax ===− fff NNN ; 

26)0,6(max =fN ; 24)2,6()1,6( maxmax == ff NN ; 

56)1,7()0,7()1,7( maxmaxmax ===− fff NNN . 

 

These results do not contradict with the results 

obtained in this work and given below. 

The obtained results of the distribution on the 

non-linearity of the entire set of M-NLFSR sized 

below 6L  are summarized in Table 5.  

Table 5. The distribution of the number of registers 

depending on nonlinearity 

fN  
Number of  

M-LFSR 

Number of 

2nd order 

M-NLFSR 

Number of 

3rd order 

M-NLFSR 

Number of 

4th order 

M-NLFSR 

2=L  

0 1    

3=L  

0 2    

4=L  

0 2    

4  14   

5=L  

0 6    

4   296  

8  66 1624  

12  56   

6=L  

0 6    

4    1 424 

8   2 892 80 004 

12   57 688 1 844 824 

16  350 615 116 19 851 036 

20    988 840 42 826 836 

24  1 596 430 664 407 588 
 

The Tables 6 and 7 summarize the distribution 

results for 6L , depending on the nonlinearity and 

the maximum order of stability, and the Tables 8 and 

9 contain similar results for the 2nd order M-NLFSR 

if 97  L . 

Table 6. The number of registers distribution 

depending on nonlinearity and maximum stability for 

M-NLFSR (if 6L  ( ) 2,1deg =f ) 

fN  

Number of  

M-LFSR 

Number of 2nd order 

M-NLFSR 

)( fsut , if =m  )( fsut , if =m  

0 1 2 3 0 1 2 3 

2=L  

0  1 – – – – – – 

3=L  

0  m 2 – –  – – – 

4=L  

0  2  –   – – 

4   – – 41) m 10 – – 

5=L  

0  2  m 4    – 

4    –    – 

8    – 8 52 m 6 – 

12   – – 561)  – – 

6=L  

0  2  4     

4         

8         

12         

16     48 188 76 m 38 

20    –    – 

24    – 740 8561)  – 

Table 7. The number of registers distribution 

depending on nonlinearity and maximum stability for 

M-NLFSR (if 6L  ( ) 4,3deg =f ) 

fN  

Number of 3rd order 

M-NLFSR 

Number of 4th order 

M-NLFSR 

)( fsut , if =m  )( fsut , if =m  

0 1 2 0 1 

2=L  

0 – – – – – 

3=L  

0 – – – – – 

5=L  

0   – – – 

4 128 168 – – – 

8 896 728 – – – 

12   – – – 

6=L  

0      

4    652 772 

8 516 2 030 346 46 484 33 520 

12 57 688   1 132 844 711 980 

16 201 388 397 360 16 368 13 341 932 6 509 104 

20 988 840   29 715 620 13 111 216 

24 186 556 241 3721) m 2 736 349 348 58 2401) 
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Table 8. The number of registers distribution 

depending on nonlinearity and maximum stability for 

M-NLFSR (if 97  L  ( ) 2deg =f ) 

fN  
)( fsut , if =m  

0 1 2 

7=L  

  0 0 0 0 

32 40 716 494 

48 7 624 24 862 3 596 

56 26 3241) 0 0 

8=L  

    0 0 0 0 

  64 148 1 578 2 226 

  96 65 078 380 856 192 572 

112 1 620 992 1 737 690 0 

9=L  

    0 0 0 0 

128 200 4398 6 608 

192 498 196 4 872 526 4 953 980 

224 67 714 544 203 967 024 19 364 756 

240 216 743 896 0 0 

Table 9. The number of registers distribution 

depending on nonlinearity and maximum stability for 

M-NLFSR (if 97  L  ( ) 2deg =f ) 

fN  
)( fsut , if =m  

3 4 5 6 

7=L  

  0 0 0 0 – 

32 378 m 4 – – 

48 0 – – – 

56 – – – – 

8=L  

    0 0 0 0 0 

  64 2 342 188 m 42 – 

  96 14 270 0 – – 

112 0 – – – 

9=L  

    0 0 0 0 0 

128 12 198 2 550 848 m 10 

192 1 079 370 18 642 0 – 

224 0 0 – – 

240 0 – – – 
 

As it can be seen from the results above, M-

NLFSR simultaneously achieve the maximum 

possible stability and maximum nonlinearity [13-

19]. Moreover, all m-optimal functions are also m-

saturated (in Tables 6-9 they are marked with «m»). 

In addition, many M-NLFSR functions that are not 

m-saturated by definition, achieve the highest 

possible result for the ),(max mLN f  seen above (in 

the tables 6–9 they are marked with «1)»). 

Some of the obtained nonlinear recurrent 

relations of functions that are simultaneously m-

optimal and m-saturated and that correspond with 

M-NLFSR [20-29]. 

For 2nd order M-NLFSR sized 5=L  (with 

nonlinearity fN = 8 and maximum stability 

)( fsut = 2, the number of monomials is 6: 
 

31325432 xxxxxxxxf +++++=  

21415431 xxxxxxxxf +++++=  

43415421 xxxxxxxxf +++++=  

31415421 xxxxxxxxf +++++=  

31415321 xxxxxxxxf +++++=  

42415431 xxxxxxxxf +++++=  
 

For 3rd order M-NLFSR sized 6=L  (with 

nonlinearity fN = 24 and maximum 

stability )( fsut  = 2, 70 functions with 10 

monomials, 346 with 12 monomials, 1124 - 14 

monomials, 924 - 16 monomials, 252 - 18 

monomials, 20 - 20 monomials: 
 

53143132143

323121654

xxxxxxxxxxx

xxxxxxxxxf

++++

++++++=
 

521421321

5241216543

xxxxxxxxx

xxxxxxxxxxf

+++

+++++++=
 

 

For 2nd order M-NLFSR sized 9=L  (with 

nonlinearity fN = 128 and maximum stability 

)( fsut  = 6, the number of monomials is 10: 
 

724298765321

757298764321

834398765321

656198764321

646398765321

635398764321

535198765421

846498754321

747198765432

825297654321

xxxxxxxxxxxxf

xxxxxxxxxxxxf

xxxxxxxxxxxxf

xxxxxxxxxxxxf

xxxxxxxxxxxxf

xxxxxxxxxxxxf

xxxxxxxxxxxxf

xxxxxxxxxxxxf

xxxxxxxxxxxxf

xxxxxxxxxxxxf

+++++++++=

+++++++++=

+++++++++=

+++++++++=

+++++++++=

+++++++++=

+++++++++=

+++++++++=

+++++++++=

+++++++++=

 

 

By analyzing the results it can be seen that 

symmetric M-NLFSR have the same  )( fsut  and 

fN . All studied M-NLFSR with ( ) 2deg f  have 

( )fL

fN deg2 − . 
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3. CONCLUSION 

This work allows us to obtain and study complete 

set of M-NLFSR 62  L , and also 97  L  the 

ANF-forming algebraic degree of which is no higher 

than ( ) 2deg f .  

Functions corresponding to M-NLFSR are 

balanced and have no prohibitions.  

Their correlation immunity and nonlinearity is 

tested and determined. The distribution of the 

number of M-NLFSR for different values of 

correlation immunity, nonlinearity, algebraic degree 

and number of monomials in ANF is given.  

It is shown that M-NLFSR achieve the value of 

the correlation immunity that corresponds to m -

optimal functions for all studied L . However, there 

are a large number of functions that have no 

correlation immunity. In addition, functions can be 

m -optimal and m -saturated at the same time.  

A number of m -optimal and simultaneously m -

saturated functions corresponding to M-NLFSR are 

given, which also possess the minimum number of 

ANF monomials, which allows us to minimize costs 

(temporary and hardware) for generating PRS (for 

given sizes) on their basis.  

Prospective direction of a further research is the 

argumentation of practical recommendations 

concerning the implementation of the introduced 

method and the ways of its use in different 

mechanisms of an information security of 

telecommunications networks and systems [30-37].  

This research might be useful to us while 

improving various methods of information security, 

as well as to other practical applications [38-43]. 
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