
O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv/ International Journal of Computing, 19(2) 2020, 190-198

 190

BOTNET DETECTION APPROACH BASED ON THE DISTRIBUTED
SYSTEMS

Oleg Savenko 1), Anatoliy Sachenko 2), Sergii Lysenko 1), George Markowsky 3),

Nadiia Vasylkiv 2)

1) Khmelnitsky National University, 29016, 11 Instytutska st., Khmelnytskyi, Ukraine,

savenko_oleg_st@ukr.net, sirogyk@ukr.net
2) Ternopil National Economic University, 46020, 11 Lvivska st., Ternopil, Ukraine, {as, nvs}@tneu.edu.ua

3) Missouri University of Science and Technology, 65409, 300 W 13th St., Rolla, USA, markov@mst.edu

Paper history:

Received 18 March 2019

Received in revised form 20 May 2020

Accepted 21 May 2020
Available online 14 June 2020

Keywords:

malware;
botnet;

botnet detection;

distributed systems;
attacks;

naive Bayes classifier;

network security.

Abstract: The paper presents a botnet detection approach for the distributed

systems. It is based on the developed three level model, which includes botnet’s

components: command and control center, control centers, basic elements of the

botnet (bots). The novel framework provides the ability to detect known and

unknown botnets, and consists of the host and the network levels. At the host

level, the detection procedure is based on the implementation of the Bayes

classification. The network level extends the results obtained at the host level to

the rest of the local area network. Proposed approach provides the exchange of

the results obtained by the Bayes classification for further use by other program

units of the distributed system. The results of the developed classifier show that

representation of the botnets’ samples for different classes and subclasses is

sufficient for efficient botnet detection. Proposed technique demonstrates

promising results concerning botnet detection in the distributed systems.

Copyright © Research Institute for Intelligent Computer Systems, 2020.

All rights reserved.

1. INTRODUCTION

The trends concerning malware development and

its spreading demonstrate an active extending of the

malware’s technical capabilities. The main

motivating factors leading to its creation are the

financial gain and political advantage. One of the

most rapidly evolving directions of the malware is

the botnets that allow an attacker to gain remote

access of the user’s computers. The harm caused by

the use of such malicious software is rapidly

increasing [1].

Architecture of the modern antiviruses has a

single central control center. Such tools as ESET

Endpoint Security for Windows Endpoint Security

for corporate networks [2], Dr.Web CureNet! [3],

Symantec Endpoint Protection [4], Malwarebytes

Endpoint Security [5], Cisco® Network Admission

Control (NAC) [6] are based on the centralized way

of functioning. Kaspersky Administration Kit

Antivirus is based on the principle of autonomous

work, and the decision-making is implemented

without the administrator participation in case of the

critical situations. However, it is also based on a

centralized way of organizing the interaction of

system components [7]. Mentioned tools are based

on methods that do not sufficiently take into account

all stages of the botnets functioning and their

possible structures, therefore it leads to the

decreasing in the botnet detection efficiency.

Therefore, the development of new methods and

tools for efficient botnets detection in the distributed

systems is an urgent problem.

2. RELATED WORKS

In the recent years, the great number of the botnet

detection approaches based on machine learning are

developed [8, 9]. In [10] the botnet detection is

based on the analysis of its group activity in the

network. The behavior is analyzed by the histogram

in order to determine the number of web requests

and their diversity over time using HTTP bots.

Proposed method uses the correlation analysis to

computing@computingonline.net

www.computingonline.net

Print ISSN 1727-6209

On-line ISSN 2312-5381

International Journal of Computing

O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv/ International Journal of Computing, 19(2) 2020, 190-198

 191

detect botnets based on the similarity and the

correlation of their group activities in the network.

The modeling system of the botnets’

architectures via agents, which take into account

various botnets’ functioning mechanisms, is

presented in [11]. It is based on the necessity to take

into consideration the special aspects of the botnets’

structure, as it is important for gathering the

characteristics of the botnets. In the articles [12-16]

the methods for botnets detection based on the

traffic analysis and anomaly detection are presented.

The disadvantage of the technique is the need for a

constant traffic analysis and the obtaining needed

features which can be changed rapidly by attackers.

Moreover, technique does not take into account the

botnets’ architectures. In [17, 18] the botnet detection

methods are based on signatures. Technique requires

capturing of a great number of packages and their

comparisons with the pre-configured attack templates

from database. The common disadvantage of these

methods is the need to update templates that affects

the inability to detect new botnets or their nodes. In

[19] a mechanism for analysis of botnet activities in

the IoT, based on machine learning techniques is

presented. It is based on network flow identifiers

that can track suspicious activities of botnets. In [20-

22] the methods for botnets detection in corporate

area networks (CAN), which include the use of a

multi-agent system, are presented. A botnet

detection is based on the analysis of the botnets'

behavior in the CAN. Method is able to detect bots,

that use such evasion techniques as cycling of IP

mapping, "domain flax", "fast flux" and DNS-

tunneling. In [23] a system of baits for malware

provoking, which is located in a distributed system,

is developed. To identify new botnets, the system

requires a permanent addition of malware’s

behaviors. In [24] a botnet detection approach uses

the unsupervised machine learning and similarity

analysis between benign traffic data and botnet's

traffic data. Known methods and tools do not

provide high efficiency of the botnet detection. This

is due to the development of new techniques for the

botnet distribution in the networks and computer

systems and appearance of new capabilities of the

botnet functioning. Moreover, network antivirus

tools are mainly based on the rigidly centralized

architecture, which is also used by intruders to attack

the computers systems, which contain such center.

Therefore, the development of new effective

methods and tools for botnet detection, which will

take into account the perspective possibilities of

botnets’ functioning and the distributed architecture

is an actual problem.

3. PROPOSED TECHNIQUE FOR
BOTNET DETECTION

3.1 THE STRUCTURE OF THE
CONTROLLED DISTRIBUTED BOTNET

The botnet is a distributed software system that

includes a great number of nodes (bots), which

communicate via malicious software. Structurally

botnets include the nodes, which are assigned to

control of the network and maintain its integrity, and

the end nodes are aimed at carrying out the

malicious actions. An attacker through a command-

control center (C&C) or via other intermediate

remote control centers [20, 25, 26] directly controls

the botnet.

Let us define the botnet’s components: command

and control center, control centers, basic elements of

the botnet (bots). The structure of the botnet is

shown in Fig. 1. Let us define the basic elements of

the botnet as the subset 𝐸3,𝑖3
 𝑖3 = 1, 2, … , 𝑛3, the

botnets’ control centers as the subsets 𝐸2,𝑖2
, where

𝑖2 = 1, 2, … , 𝑛2 – a number of botnet’s basic

elements, where 𝑛2 – is a number of control centers

of the botnet.

Let us define the command-control centers of the

botnet as the subsets 𝐸1,𝑖1
 where 𝑖𝑖 = 1, 2, … , 𝑛, n1 – a

number of command-control centers of the botnet.

The number of these centers may vary.

Botnets may have different architectures,

depending on the topology and communication

elements: multi-server, hierarchical, random (peer-

to-peer) and hybrid. Presented architecture in Fig. 1

is generalized and covers these topologies.

Figure 1 –The structure of the controlled distributed

botnet

O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv/ International Journal of Computing, 19(2) 2020, 190-198

 192

Let us present the botnet as the union of its

components as follows:

𝐸 = ⋃ 𝐸1,𝑖1

𝑛1
𝑖1=1 ⋃ 𝐸2,𝑖2

𝑛2
𝑖2=1 ⋃ 𝐸3,𝑖3

𝑛3
𝑖3=1 , (1)

where E – a set of the botnet’s components. As the

elements of the subsets 𝐸𝑤,𝑖 are the functions 𝑓𝑖1,𝑖2,𝑖3
.

Different elements of subsets 𝐸𝑤,𝑖 may include the

same functions. Functional load of each of the

assigned functions depends on the type of operating

systems and their API functions, respectively.

Let us consider the botnet’s malicious action as

the sequence of the API calls.

In order to represent botnet’s behavior malicious

actions let us define its main items:

• a vector that describes its malicious actions

𝑣𝑧,𝑓𝑖1,𝑖2,𝑖3
 and corresponding vectors 𝑣𝐴𝑃𝐼,𝑥,𝑓𝑖1,𝑖2,𝑖3 ,𝑚𝑢,𝑙

that describe its malicious actions, presented via the

variants of API functions that are able to execute

malicious actions;

• vectors of possibly malicious actions

𝑣𝑝,𝑒𝑠
= (𝑣𝑝,𝑒𝑠,1, 𝑣𝑝,𝑒𝑠,2, … , 𝑣𝑝,𝑒𝑠,𝑛𝑣𝑝

) captured at the

monitoring stage and corresponding vectors 𝑣𝑝,𝐾,𝑒𝑠
=

 (𝑣𝑝,𝐾,𝑒𝑠,1, 𝑣𝑝,𝐾,𝑒𝑠,2, … , 𝑣𝑝,𝐾,𝑒𝑠,𝑛𝑣𝑝
) that describe its

malicious actions, presented via the variants of API

functions captured at the monitoring stage

• z defines the malicious action;

• x – a type of operating system;

• p – possible malicious action;

• mu – a number of vector’s component;

• l – a number of variations of malicious action

presentation via API functions;

• 𝑒𝑠 - the vector number;

• s – a number of variant of the malicious

action presentation via API functions;

• 𝑛𝑣𝑝
- a number of the vector components 𝑣𝑝,𝑒𝑠

.

The vector components 𝑣𝑝,𝑒𝑠
 are the numbers of

API functions that may be executed by the botnets.

The task of the classifier is to assign the analyzed

vector 𝑣𝑝,𝑒𝑠
 to one of the botnets’ classes.

Based on the structure presented in Fig. 1 of the

reference botnet’s model, presented via the vectors

of the malicious actions is assigned to class Ki.

Known types of the botnets are characterized by the

different functional possibilities. Furthermore, some

malicious actions, implemented via API functions,

may occur more frequently.

One malicious botnet’s action may be described

by more than one vector, which contain the sets of

the most often called API functions to perform

specified malicious botnet’s actions. The botnets’

classes are characterized by mentioned vectors.

Because the structure of the botnet may include the

basic elements, control centers and command-

control centers of the botnet and corresponded

vector of malicious actions could not be compared

with the whole class, each class could be divided

into subclasses.

In order to establish, that the resulting vector is a

malware or benign software, the naive Bayesian

classifier is used. Its main benefits are: simple and

easy implementation, it does not require as much

training data, it handles both continuous and discrete

data, it is highly scalable with the number of

predictors and data points, it is fast and can be used

to make real-time predictions, and it is not sensitive

to irrelevant botnets’ features.

Let us define 𝑉𝑝 = {𝑣𝑝,1, 𝑣𝑝,2, … , 𝑣𝑝,𝑛𝑉𝑝
} as the

sample formed on the basis of the API calls for the

vectors 𝑣𝑝,𝑒𝑠
, A – a hypothesis about the membership

of values 𝑉𝑝 to one of the botnets classes 𝐾𝑙, where 𝑙 =

0, 1, … , 6. In order to solve the classification problem

we are to evaluate the probability, that the sample 𝑉𝑝

belongs to the class 𝐾𝑙, taking into account the

knowledge about the botnets’ actions. For this purpose

we need to define the probability 𝑃(A | 𝑉𝑝) that the

hypothesis A contains the data from the sample 𝑉𝑝. Let

us evaluate a posteriori probability 𝑃(A | 𝑉𝑝) - the

probability that the value of A depends on the actions

of the sample 𝑉𝑝, using Bayes' theorem.

Each botnets class 𝐾𝑙 is defined and represented

by a set of pairs vectors 𝑣𝑧,𝑓𝑖1,𝑖2,𝑖3
 and 𝑣𝐴𝑃𝐼,𝑥,𝑓𝑖1,𝑖2,𝑖3 ,𝑚𝑢,𝑙.

The sample 𝑉𝑝 belongs to the class 𝐾𝑙 with the

highest value of the posteriori probability if and only

if the condition is fulfilled:

𝑃(𝐾𝑙1
 | 𝑉𝑝) > 𝑃(𝐾𝑙2

 | 𝑉𝑝), (2)

For all 𝑙1 and 𝑙2, such that 0≤ 𝑙1 ≤ 6, 0 ≤ 𝑙2 ≤
6, 𝑙1 ≠ 𝑙2.

So, we search for a class with the highest value of

the probability 𝑃(𝐾𝑙 | 𝑉𝑝).

In order to assign the vector 𝑣𝑝,𝑒𝑠
 to the botnet’s

certain class, the product of the probabilities of API

functions that were included into the vector of

potentially suspicious actions is to be evaluated. For

this purpose, the multi-nominal generative model,

which takes into account the number of repetitions

of API functions and does not take into account the

absence of some API functions, was used.

The definition of the membership of the vector

𝑣𝑝,𝑒𝑠
 to the class 𝐾𝑦 or its subclass 𝐾𝑦,𝑔 is performed

on the basis of the calculations of the probabilities

for each class or subclass using Bayes classifier

evaluations:

O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv/ International Journal of Computing, 19(2) 2020, 190-198

 193

P(vp,es
| Ky,g) =

= P (|nvp
|) nvp

! ×

× ∏ (
1

vp,K,es,w!
(

vAPI,x,w,fi1,i2,i3 ,g,l

∑ vAPI,x,w,fi1,i2,i3 ,g,l
mu,0

g=1

)

vp,K,es,w

)

nmu

w=1

(3)

In order to conduct the training procedure, the

probabilities 𝑃 (𝑣𝑧,𝑧𝑣,𝑓𝑖1,𝑖2,𝑖3
| 𝐾𝑦,𝑔) are to be processed.

For this purpose, we evaluate the optimal estimates

of the probabilities that some API function will be

present in each class or subclass by modifying the

result using the Laplace algorithm to avoid the

"zero-frequency" problem:

𝑃 (𝑣𝑧,𝑑,𝑓𝑖1,𝑖2,𝑖3
| 𝐾𝑦,𝑔) =

 =
1+ ∑ 𝑣𝐴𝑃𝐼,𝑥,𝑏,𝑓𝑖1,𝑖2,𝑖3

,𝑔,𝑙

∑ 𝑙𝑔,𝑦
𝑚𝑢,𝑦
𝑔=1

𝑏=1 𝑃(𝐾𝑦,𝑔
| 𝑣𝑧,𝑏,𝑓𝑖1,𝑖2,𝑖3

)

𝑛𝑚𝑢+ ∑ ∑ 𝑣𝐴𝑃𝐼,𝑥,𝑑,𝑓𝑖1,𝑖2,𝑖3
,𝑔,𝑙

∑ 𝑙𝑔,𝑦
𝑚𝑢,𝑦
𝑔=1

𝑏=1 𝑃(𝐾𝑦,𝑔
| 𝑣𝑧,𝑏,𝑓𝑖1,𝑖2,𝑖3

)
𝑛𝑚𝑢
𝑑=1

(4)

3.2 LEARNING PROCEDURE

The learning procedure involves the following

stages:

1) definitions of the subclasses via one

presentation of API functions for each of them, and

calculation of the probabilities for each of the

subclasses and classes, and their definitions as

primary;

2) for each known next variation of the

presentation of the malicious botnet’s action via

vector of API function, is to be classified by the

Bayes classifier into the classes and subclasses;

if the received presentation of the malicious

botnet’s action is assigned correctly to the specified

subclass, then its marked elements are added to the

subclass as a separate sample;

if obtained result does not classify it into the

required subclass, it in this subclass, but at the same

time comparisons with other values of the classes

are to be performed; the result of the comparisons

will be the deviation from initial values of

probabilities;

if the resulting probability is significantly (the

threshold more than 10%) different from the primary

probability of a subclass or class, then a new

separate subclass of this class is to be created;

for each learning stage the probabilities for each

API function of the subclasses and classes are to be

calculated; for those subclasses and classes, where

the divergence with the primary classes is more than

10%, a new subclass is to be created in its subclass;

all probabilities obtained after several iterations

are averaged and are considered as appropriate

probabilities for use in further calculations;

3) after the basic training phase is completed and

the new data to Bayes classifier is added, the

deviations verification for the additional subclasses

is to be performed, and divergence between its mean

probabilities values is to be evaluated;

if the divergence value is less than 10%, then the

subclass is added by the data of the additional

subclass, and all probabilities and their mean values

are to be recalculated;

4) at each stage the difference between the mean

probabilities’ values and the difference between the

probabilities values obtained by the classifier are to

be evaluated; if the difference is more than 10% for

some subclasses, then training is to be continued for

them by adding additional data and repeating the

steps 1-3.

The vector 𝑣𝑝,𝑒𝑠
 may not be assigned to any given

class and subclass. It means that the analyzed object

does not include probably malicious actions. This

fact is based not only on the search for the maximum

probability calculated by Bayes theorem, but also on

the correspondence between this probability and the

thresholds’ values of classes and subclasses defined

during the classifier's learning process. This is due to

the fact that the executable process represented by

the vector 𝑣𝑝,𝑒𝑠
, may belong to benign software. In

this case, further analysis is interrupted.

The self-learning procedure is carried out

according to the training scheme (steps 1-4). After

the analysis of the vector of possible malicious

actions is performed, its data has to be added to the

class and its probabilities are to be calculated. If the

deviations of the probabilities are within the

specified thresholds for one of the subclasses, then

after the classification is completed, its new data in

its subclass is included and new calculation for the

entire classifier and its mean values of probability

deviations is performed.

After the new item is added to the classifier of

the program unit, the obtained information is sent to

other program units of the distributed system for use.

The decision concerning the location of the

processing of the obtained vector of the malicious

actions is determined on the basis of the computer

system’s workload, in which these data were

collected. If the workload is high, then obtained

vectors are sent to other program units for

processing. After the data processing is complete,

obtained results are to be sent back.

If the classifier analyzed software is assigned as

the malicious, it is added to the classifier and is sent

to all program units of the distributed system.

O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv/ International Journal of Computing, 19(2) 2020, 190-198

 194

3.3 THE STAGES OF THE BOTNET
DETECTION APPROACH BASED ON THE
DISTRIBUTED ARCHITECTURE

The botnet detection approach based on the

distributed architecture involves the stages:

1. Obtaining the information concerning the

active processes using an active monitoring (starting

from the first API function of each process that will

be performed after the start of the computer system).

2. Gathering the monitoring data into the vector

after detecting possible malicious actions in the

computer system.

3. Formation of feature vector based on

determined potentially malicious actions. The

components the feature vector are the API functions.

4. The decision making about the location of the

feature vector processing.

5. If the computing load of the computer system

is low, then information is processed on this

computer system, otherwise it is sent to another

specified program unit of the computer system.

6. The implementation of the vector classification

and analysis of its results.

6.1. If the feature vector has been assigned to one

of the botnets’ class, then this information is to be

sent to all classifiers of all program units.

6.2. If the feature vector has been assigned to the

several botnets classes, then other program units of

the distributed system are to be involved for feature

vector analysis.

6.3. If the similarity with the available botnets’

classes is low, but other program units of the

distributed system have made a decision that feature

vector contains malicious action, a new botnet class

is to be created, the classification information is to

be updated and sent to all program units of the

distributed system.

6.4. If the analyzed feature vector does not

contain malicious actions, then the analysis is

completed.

6.5. If the feature vector corresponds to malicious

behavior, the analyzed executable is stopped.

6.6. Search for the similar processes in other

computer systems of the network using installed

program units of the distributed system based on the

obtained information.

7. Calculation of the probability values for each

program unit of the antivirus distributed system that

the computer system is infected.

Thus, the developed technique is able to detect

new botnets and is based on the distributed

architecture and with the use of the Bayes classifier.

The architecture of the distributed system is

presented in Fig. 2.

Figure 2 –The architecture of the distributed system

5. EXPERIMENTS

The purpose of the experiments was to verify the

efficiency of the botnet detection technique using the

Bayes classifier. In order to carry out the

experiments, 28 artificial botnets were constructed,

grouped by classes. Mentioned botnet had the

functional properties of the bots’ classes: Agobot,

SDBot, Spybot, evilbot, DSNX, G-sys (remote

control, usage of the system vulnerabilities, server

attacks, system spying, etc).

Obtained malicious programs included 25

structural elements with three functioning stages

which used 81 API functions [20]. Not all botnets

used for experiments contained all possible

structural elements and functions.

Each malicious sample was presented as the

vector taking into account the variations of its

presentation via API functions, and all samples are

assigned into the botnets and classes and subclasses.

In order to conduct the experiment, the local

network with 19 computer systems was employed.

Each of the computer system contained the program

unit without any other antivirus tools.

First, a program unit used a classifier with no one

of the generated botnets’ samples. One computer

system contained the command control center, and

O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv/ International Journal of Computing, 19(2) 2020, 190-198

 195

the control centers were located in 3 computer

systems, and 15 computer systems were infected via

botnet’s bots.

The installation of the generated botnets was

carried out alternately. The experiment being

completed, all computer systems in the network

were completely updated, except the classifiers.

Each experiment for each botnet’s sample lasted

96 hours. For the experiment, the botnets were

selected that use the strategy of obtaining complete

control over the computer system.

The experiments involved the extraction of the

vectors of possible malicious actions via API calls

monitoring in the computer system. Obtained

vectors were analyzed by the classifier of the

program unit. The experiments were carried out

concerning the trained and untrained classifier.

The aim of the experiments was to determine the

rates of the botnet detection efficiency for classes

and subclasses using the Bayes classification.

In order to evaluate the method efficiency, let us

consider its main parameters:

P1,1 and P1,2 - the rates of correctly classified

vectors of botnets’ malicious samples concerning

botnets’ classes using trained and untrained

classifiers respectively;

P2,1 and P2,2 - the rates of correctly classified

vectors of botnets’ malicious samples concerning

botnets’ subclasses using trained and untrained

classifiers respectively;

P3,1 and P3,2 – the rates of correctly identified

computer systems as infected using trained and

untrained classifiers respectively;

P4,1 and P4,2 – false positives (for trained and

untrained classifiers);

P5,1 and P5,2– the rates of the malicious samples

assigned to wrong botnet’s class using trained and

untrained classifiers respectively.

The results of the experiment for seven botnets

classes are presented in Table 1.

Table 1. The results of the experiment

Parameter

Resulting values for different classes Average

value
Class 0

Class

1
Class 2 Class 3 Class 4 Class 5 Class 6

P1,1 , % 90,74 84,29 73,66 86,30 94,04 94,18 96,60 89,44

P1,2 , % 75,93 63,57 60,22 70,32 68,77 67,60 69,36 67,71

|P1,1-P1,2| , % 14,81 20,72 13,44 15,98 25,27 26,58 27,24 21,73

P2,1 , % 85,80 83,57 72,58 85,39 98,88 93,92 96,60 88,42

P2,2 , % 74,69 63,57 59,14 70,32 67,37 66,58 67,66 66,80

|P2,1-P2,2| , % 11,11 20 13,44 15,07 31,57 27,34 28,94 21,62

P3,1 , % 92,11 84,21 71,93 89,47 90,53 88,42 93,68 87,72

P3,2 , % 76,32 57,89 63,16 64,91 71,58 54,74 75,79 65,89

|P3,1-P3,2| , % 15,79 26,32 8,77 24,56 18,95 33,68 17,89 21,83

P4,1 , % 7,89 14,47 28,07 10,53 7,37 11,58 6,32 11,70

P4,2 , % 21,05 40,79 36,84 31,58 24,21 44,21 22,11 31,97

|P4,1-P4,2| , % 13,16 26,32 8,77 21,05 16,84 32,63 15,79 20,27

P5,1 , % 0 1,32 0 0 2,11 0 0 0,49

P5,2 , % 2,63 1,32 0 3,51 4,21 1,05 2,11 2,14

|P5,1-P5,2| , % 2,63 0 0 3,51 2,1 1,05 2,11 2,13

The results of the experiment demonstrated, that

the accuracy of the botnet’s samples classification is

66% for the classifier without involvement of

botnet’s samples and 88% for the classifier, which

was trained using the generated vectors. The

obtained results were averaged and their dispersion

relative to the mean value is 1%.

The difference of deviation for each class and

subclass using trained and untrained classification

execution was 21.5%. The dispersion for each class

and subclass using two ways of classification was

less than 5%. The rates of false positives using two

ways of classification execution were 11.7% (trained

classifier) and 31.97% (untrained classifier).

The rates of assignment of the malicious samples

to wrong botnet’s class using trained and untrained

classifiers were 0.01% and 2.14% respectively.

O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv/ International Journal of Computing, 19(2) 2020, 190-198

 196

6. CONCLUSION

The paper presents a botnet detection approach

for the distributed systems. The novel framework

provides the ability to detect botnets. It consists of

two parts: the host and the network levels.

At the host level, the detection procedure is based

on the implementation of the Bayes classification.

The network level extends the results obtained at the

host level to the rest of the local area network. The

approach provides the exchange of the results

obtained by the Bayes classification for further use

by other program units of the distributed system.

The results of the developed classifier show that

representation of the botnets’ samples for different

classes and subclasses is sufficient for efficient

botnet detection. The results of the experiment

demonstrated, that the accuracy of the botnet’s

detection is up to 88%.

7. THE FUTURE WORK

The future work is to develop new methods for

botnet detection, which will be focused on the

architecture of the distributed systems. It should

involve the advantages over the host methods,

extending by new botnets samples for more efficient

botnet detection.

8. REFERENCES

[1] TrendMicro, 2019, [Online]. Available at:

https://www.trendmicro.com/vinfo/us/security/

news/botnets.

[2] ESET Endpoint Security, 2019, [Online].

Available at: https://eset.ua/ua/ products/for_

business/security/endpoint_security.

[3] Dr. Web CureNet, 2019, [Online]. Available at:

https://curenet.drweb.ru.

[4] Symantec Endpoint Protection, 2019, [Online].

Available at: https://www.anti-malware.ru/

reviews/Symantec_Endpoint_Protection.

[5] Malwarebytes Endpoint Security, 2019,

[Online]. Available at: https://ru.malware bytes.

com/business/endpoint security.

[6] Network Admission Control, 2019, [Online].

Available at: https://www.cisco.com/web/RU/

products/hw/wireless/secure/cnac.html.

[7] Kaspersky Administration Kit, 2019, [Online].

Available at: https://support.kaspersky.ru/

learning/courses/kl_102.80/intro/section1.

[8] S. Miller, C. Busby-Earle, “The role of

machine learning in botnet detection,”

Proceedings of the 2016 11th International

Conference for Internet Technology and

Secured Transactions (ICITST), Barcelona,

2016, pp. 359-364, DOI:

10.1109/ICITST.2016.7856730.

[9] K. Alieyan, A. ALmomani, A. Manasrah, M.M

Kadhum “A survey of botnet detection based

on DNS,” Neural Computing and Applications.

vol. 28, no. 7, pp. 1541-1558, 2017.

[10] M. Eslahi, W.Z. Abidin, and M.V. Naseri,

“Correlation-based HTTP Botnet detection

using network communication histogram

analysis,” Proceedings of the Application,

Information and Network Security (AINS),

Miri, Malaysia, November 13-14, 2017, pp. 7-

12.

[11] A. Pronoza, L. Vitkova, A. Chechulin, I.

Kotenko, “Visual analysis of information

dissemination channels in social network for

protection against inappropriate content,”

Proceedings of the 3rd International Scientific

Conference Intelligent Information

Technologies for Industry, Sochi, Russia,

September 17-21, 2019, vol. 2, pp. 95-105.

[12] M. Komar, A. Sachenko, V. Golovko, V.

Dorosh, “Compression of network traffic

parameters for detecting cyber attacks based on

deep learning,” Proceedings of 2018 IEEE 9th

International Conference on Dependable

Systems Services and Technologies

DESSERT'2018, Kiev, Ukraine, May 24-27,

2018, pp. 44-47.

[13] S.H. Li, Y.C. Kao, Z.C. Zhang, Y.P. Chuang

and D.C. Yen, “A network behavior-based

botnet detection mechanism using PSO and K-

means,” Journal ACM Transactions on

Management Information Systems (TMIS), vol.

6, issue 1, pp. 1-30, 2015.

[14] M. Stevanovic and J. M. Pedersen, “An

analysis of network traffic classification for

botnet detection,” Proceedings of the 2015

International Conference on Cyber Situational

Awareness, Data Analytics and Assessment

London, UK, June 8-9, 2015, pp. 1-8.

[15] M. Sun, G. Xu, J. Zhang, D. Kim, “Tracking

you through DNS traffic: Linking user sessions

by clustering with Dirichlet mixture model, ” in

Proceedings of the 20th ACM International

Conference on Modeling, Analysis, and

Simulation of Wireless and Mobile Systems,

Miami, FL, US, November 2017, pp. 303-310.

[16] K. Schomp, M. Rabinovich, and M. Allman,

“Towards a model of DNS client behavior,”

Proceedings of the International Conference on

Passive and Active Network Measurement,

O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv/ International Journal of Computing, 19(2) 2020, 190-198

 197

Heraklion, Crete, Greece, 31 March - 1 April,

2016, vol. 9631, pp. 263-275.

[17] J. Zheng, Q. Li, G. Gu, J. Cao, D.K. Yau, J.

Wu, “Realtime DDoS defense using COTS

SDN switches via adaptive correlation

analysis,” IEEE Transactions on Information

Forensics and Security, vol. 13, issue 7, pp.

1838-1853, 2018.

[18] M. Kuhrer, T. Hupperich, J. Bushart, C.

Rossow and T. Holz. “Going wild: Large-scale

classification of open DNS resolvers,”

Proceedings of the ACM Internet Measurement

Conference (IMC), Tokyo, Japan, October 28-

30, 2015, pp. 355-368.

[19] N. Koroniotis, N. Moustafa, E. Sitnikova, J.
Slay, “Towards developing network forensic

mechanism for botnet activities in the IoT

based on machine learning techniques,”

Proceedings of the International Conference on

Mobile Networks and Management, Springer,

Cham, 2017, pp. 30-44.

[20] O. Savenko, S. Lysenko, A. Kryschuk, “Multi-

agent based approach of botnet detection in

computer systems,” in Communications in

Computer and Information Science book series,

vol. 291, 2012, pp. 171-180.

[21] S. Lysenko, O. Savenko, A. Kryshchuk, Y.

Klyots, “Botnet detection technique for

corporate area network,” Proceedings of the

IEEE 7th International Conference on

Intelligent Data Acquisition and Advanced

Computing Systems IDAACS’2013, Berlin,

Germany, September 2013, vol. 1, pp. 315-320.

[22] A. Karim, R.B. Salleh, M. Shiraz, et al.,

“Botnet detection techniques: review, future

trends, and issues,” Journal of Zhejiang

University SCIENCE C, vol. 15, pp. 943–983,

2014. https://doi.org/10.1631/jzus.C1300242

[23] T. Sochor, M. Zuzcak, “Attractiveness study of

honeypots and honeynets in internet threat

detection,” Communications in Computer and

Information Science, vol. 522, pp. 69-81, 2015.

[24] W. Wu, J. Alvarez, C. Liu, H. M. Sun, “Bot

detection using unsupervised machine

learning,” Microsystem Technologies, vol. 24,

issue 1, pp. 209-217, 2018.

[25] M. Mahmoud, M.P. Nir, A. Matrawy, “A

survey on botnet architectures, detection and

defences,” International Journal of Network

Security, vol. 17, issue 3, pp. 264-281, 2014.

[26] Y. Meidan et al., “N-BaIoT—Network-based

detection of IoT botnet attacks using deep

autoencoders,” IEEE Pervasive Computing,

vol. 17, no. 3, pp. 12-22, Jul.-Sep. 2018, DOI:

10.1109/MPRV.2018.03367731.

Oleg Savenko is a Professor

and Dean of the Faculty of

Programming and Computer

and Telecommunication

Systems, Khmelnytsky

National University. He earned

his B.Eng. Degree in

Kamyanets-Podilsky State

Pedagogical Institute in 1993

and his PhD Degree in Vinnitsa

State Technical University in 1999. His main Areas

of Research Interest are Methods for malware

detecting, Operating Systems and Artificial

Intelligence.

Anatoliy Sachenko is Pro-

fessor and Head of Dept for

Information Computer Systems

and Control, and Principal

Investigator of the Research

Institute for Intelligent Computer

Systems, Ternopil National Eco-
nomic University. He earned his PhD Degree in

Electrical Engineering at L’viv Physics and

Mechanics Institute, Ukrainian National Academy

of Science, in 1978 and his Doctor of Technical

Sciences Degree in Electrical and Computer

Engineering at Leningrad Electrotechnic Institute in

1988.

His main Areas of Research Interest are

Computational Intelligence in Applications,

Distributed Measuring Systems and Networks,

Intelligent Cyber Security, Wireless Sensor

Networks, IT Project Management.

Sergii Lysenko, is an Associate

Professor of the Department of

Computer Engineering and Sys-

tem Programming, Khmelnytsky

National University. He earned

his B.Eng. Degree in

Khmelnytsky National University

in 2005 and his PhD Degree in

Ternopil National Economic

University in 2011.

His main research interests are Self-adaptive

detection systems for cyber-threats in computer

networks, Methods of detecting cyber attacks in

corporate networks and robotics.

O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv/ International Journal of Computing, 19(2) 2020, 190-198

 198

George Markowsky, currently

is a Professor and Chair of

Computer Science Missouri

University of Science and

Technology. George Markowsky

has published 115 journal

papers, book chapter, book

reviews and conference papers

on various aspects of Computer

Science and Mathematics.
He has written or edited 15 books and reports on

various aspects of computing. He also holds a

patent in the area of Universal Hashing. His interests

range from pure mathematics to the application of

mathematics and computer science to biological

problems. He has also built voice controlled and

enhanced keyboard terminals for use by paralyzed

individuals.

Nadiya Vasylkiv is an Asso-

ciate Professor at the Depart-

ment of Information Computing

Systems and Control, Ternopil

National Economic University.

She graduated from Ivan Franko

Lviv National University with a

degree in Physics in 1981. She

earned her PhD on temperature

measurement in 2011.
Her main research interests: information system

design, IT project management, metrology of data

acquisition systems.

