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Abstract: The paper presents a botnet detection approach for the distributed 

systems. It is based on the developed three level model, which includes botnet’s 

components: command and control center, control centers, basic elements of the 

botnet (bots). The novel framework provides the ability to detect known and 

unknown botnets, and consists of the host and the network levels. At the host 

level, the detection procedure is based on the implementation of the Bayes 

classification. The network level extends the results obtained at the host level to 

the rest of the local area network. Proposed approach provides the exchange of 

the results obtained by the Bayes classification for further use by other program 

units of the distributed system. The results of the developed classifier show that 

representation of the botnets’ samples for different classes and subclasses is 

sufficient for efficient botnet detection. Proposed technique demonstrates 

promising results concerning botnet detection in the distributed systems. 

Copyright © Research Institute for Intelligent Computer Systems, 2020.  
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1. INTRODUCTION  

The trends concerning malware development and 

its spreading demonstrate an active extending of the 

malware’s technical capabilities. The main 

motivating factors leading to its creation are the 

financial gain and political advantage. One of the 

most rapidly evolving directions of the malware is 

the botnets that allow an attacker to gain remote 

access of the user’s computers. The harm caused by 

the use of such malicious software is rapidly 

increasing [1].  

Architecture of the modern antiviruses has a 

single central control center. Such tools as ESET 

Endpoint Security for Windows Endpoint Security 

for corporate networks [2], Dr.Web CureNet! [3], 

Symantec Endpoint Protection [4], Malwarebytes 

Endpoint Security [5], Cisco® Network Admission 

Control (NAC) [6] are based on the centralized way 

of functioning. Kaspersky Administration Kit 

Antivirus is based on the principle of autonomous 

work, and the decision-making is implemented 

without the administrator participation in case of the 

critical situations. However, it is also based on a 

centralized way of organizing the interaction of 

system components [7]. Mentioned tools are based 

on methods that do not sufficiently take into account 

all stages of the botnets functioning and their 

possible structures, therefore it leads to the 

decreasing in the botnet detection efficiency.  

Therefore, the development of new methods and 

tools for efficient botnets detection in the distributed 

systems is an urgent problem. 
 

2. RELATED WORKS 

In the recent years, the great number of the botnet 

detection approaches based on machine learning are 

developed [8, 9]. In [10] the botnet detection is 

based on the analysis of its group activity in the 

network. The behavior is analyzed by the histogram 

in order to determine the number of web requests 

and their diversity over time using HTTP bots. 

Proposed method uses the correlation analysis to 
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detect botnets based on the similarity and the 

correlation of their group activities in the network. 

The modeling system of the botnets’ 

architectures via agents, which take into account 

various botnets’ functioning mechanisms, is 

presented in [11]. It is based on the necessity to take 

into consideration the special aspects of the botnets’ 

structure, as it is important for gathering the 

characteristics of the botnets. In the articles [12-16] 

the methods for botnets detection based on the 

traffic analysis and anomaly detection are presented. 

The disadvantage of the technique is the need for a 

constant traffic analysis and the obtaining needed 

features which can be changed rapidly by attackers. 

Moreover, technique does not take into account the 

botnets’ architectures. In [17, 18] the botnet detection 

methods are based on signatures. Technique requires 

capturing of a great number of packages and their 

comparisons with the pre-configured attack templates 

from database. The common disadvantage of these 

methods is the need to update templates that affects 

the inability to detect new botnets or their nodes. In 

[19] a mechanism for analysis of botnet activities in 

the IoT, based on machine learning techniques is 

presented. It is based on network flow identifiers 

that can track suspicious activities of botnets. In [20-

22] the methods for botnets detection in corporate 

area networks (CAN), which include the use of a 

multi-agent system, are presented. A botnet 

detection is based on the analysis of the botnets' 

behavior in the CAN. Method is able to detect bots, 

that use such evasion techniques as cycling of IP 

mapping, "domain flax", "fast flux" and DNS-

tunneling. In [23] a system of baits for malware 

provoking, which is located in a distributed system, 

is developed. To identify new botnets, the system 

requires a permanent addition of malware’s 

behaviors. In [24] a botnet detection approach uses 

the unsupervised machine learning and similarity 

analysis between benign traffic data and botnet's 

traffic data. Known methods and tools do not 

provide  high efficiency of the botnet detection. This 

is due to the development of new techniques for the 

botnet distribution in the networks and computer 

systems and appearance of new capabilities of the 

botnet functioning. Moreover, network antivirus 

tools are mainly based on the rigidly centralized 

architecture, which is also used by intruders to attack 

the computers systems, which contain such center. 

Therefore, the development of new effective 

methods and tools for botnet detection, which will 

take into account the perspective possibilities of 

botnets’ functioning and the distributed architecture 

is an actual problem. 

 

3. PROPOSED TECHNIQUE FOR 
BOTNET DETECTION 

3.1 THE STRUCTURE OF THE 
CONTROLLED DISTRIBUTED BOTNET  

The botnet is a distributed software system that 

includes a great number of nodes (bots), which 

communicate via malicious software. Structurally 

botnets include the nodes, which are assigned to 

control of the network and maintain its integrity, and 

the end nodes are aimed at carrying out the 

malicious actions. An attacker through a command-

control center (C&C) or via other intermediate 

remote control centers [20, 25, 26] directly controls 

the botnet. 

Let us define the botnet’s components: command 

and control center, control centers, basic elements of 

the botnet (bots). The structure of the botnet is 

shown in Fig. 1. Let us define the basic elements of 

the botnet as the subset 𝐸3,𝑖3
 𝑖3 = 1, 2, … , 𝑛3, the 

botnets’ control centers as the subsets 𝐸2,𝑖2
, where  

𝑖2 = 1, 2, … , 𝑛2 – a number of botnet’s basic 

elements, where 𝑛2 – is a number of control centers 

of the botnet. 

Let us define the command-control centers of the 

botnet as the subsets 𝐸1,𝑖1
 where 𝑖𝑖 = 1, 2, … , 𝑛, n1 – a 

number of command-control centers of the botnet. 

The number of these centers may vary.  

Botnets may have different architectures, 

depending on the topology and communication 

elements: multi-server, hierarchical, random (peer-

to-peer) and hybrid. Presented architecture in Fig. 1 

is generalized and covers these topologies. 

 

 

Figure 1 –The structure of the controlled distributed 

botnet 
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Let us present the botnet as the union of its 

components as follows: 

 

𝐸 =  ⋃ 𝐸1,𝑖1

𝑛1
𝑖1=1 ⋃ 𝐸2,𝑖2

𝑛2
𝑖2=1 ⋃ 𝐸3,𝑖3

𝑛3
𝑖3=1 , (1) 

 

where E – a set of the botnet’s components. As the 

elements of the subsets 𝐸𝑤,𝑖 are the functions 𝑓𝑖1,𝑖2,𝑖3
. 

Different elements of subsets 𝐸𝑤,𝑖 may include the 

same functions. Functional load of each of the 

assigned functions depends on the type of operating 

systems and their API functions, respectively.  

Let us consider the botnet’s malicious action as 

the sequence of the API calls.  

In order to represent botnet’s behavior malicious 

actions let us define its main items: 

• a vector that describes its malicious actions 

𝑣𝑧,𝑓𝑖1,𝑖2,𝑖3
 and corresponding vectors 𝑣𝐴𝑃𝐼,𝑥,𝑓𝑖1,𝑖2,𝑖3 ,𝑚𝑢,𝑙 

that describe its malicious actions, presented via the 

variants of API functions that are able to execute 

malicious actions;  

• vectors of possibly malicious actions                    

𝑣𝑝,𝑒𝑠
=  (𝑣𝑝,𝑒𝑠,1, 𝑣𝑝,𝑒𝑠,2, … , 𝑣𝑝,𝑒𝑠,𝑛𝑣𝑝

) captured at the 

monitoring stage and corresponding vectors 𝑣𝑝,𝐾,𝑒𝑠
=

 (𝑣𝑝,𝐾,𝑒𝑠,1, 𝑣𝑝,𝐾,𝑒𝑠,2, … , 𝑣𝑝,𝐾,𝑒𝑠,𝑛𝑣𝑝
) that describe its 

malicious actions, presented via the variants of API 

functions captured at the monitoring stage 

• z defines the malicious action; 

• x – a type of operating system; 

•  p – possible malicious action; 

• mu – a  number of vector’s component; 

• l – a number of variations of malicious action 

presentation via API functions; 

• 𝑒𝑠 - the vector number; 

• s – a number of variant of the malicious 

action presentation via API functions; 

• 𝑛𝑣𝑝
- a number of the vector components 𝑣𝑝,𝑒𝑠

.  

The vector components 𝑣𝑝,𝑒𝑠
 are the numbers of 

API functions that may be executed by the botnets. 

The task of the classifier is to assign the analyzed 

vector 𝑣𝑝,𝑒𝑠
 to one of the botnets’ classes. 

Based on the structure presented in Fig. 1 of the 

reference botnet’s model, presented via the vectors 

of the malicious actions is assigned to class Ki. 

Known types of the botnets are characterized by the 

different functional possibilities. Furthermore, some 

malicious actions, implemented via API functions, 

may occur more frequently. 

One malicious botnet’s action may be described 

by more than one vector, which contain the sets of 

the most often called API functions to perform 

specified malicious botnet’s actions. The botnets’ 

classes are characterized by mentioned vectors. 

Because the structure of the botnet may include the 

basic elements, control centers and command-

control centers of the botnet and corresponded 

vector of malicious actions could not be compared 

with the whole class, each class could be divided 

into subclasses. 

In order to establish, that the resulting vector is a 

malware or benign software, the naive Bayesian 

classifier is used. Its main benefits are: simple and 

easy implementation, it does not require as much 

training data, it handles both continuous and discrete 

data, it is highly scalable with the number of 

predictors and data points, it is fast and can be used 

to make real-time predictions, and it is not sensitive 

to irrelevant botnets’ features. 

Let us define 𝑉𝑝 =  {𝑣𝑝,1, 𝑣𝑝,2, … , 𝑣𝑝,𝑛𝑉𝑝
} as the 

sample formed on the basis of the API calls for the 

vectors 𝑣𝑝,𝑒𝑠
, A – a hypothesis about the membership 

of values 𝑉𝑝 to one of the botnets classes 𝐾𝑙, where 𝑙 =

0, 1, … , 6. In order to solve the classification problem 

we are to evaluate the probability, that the sample 𝑉𝑝 

belongs to the class 𝐾𝑙, taking into account the 

knowledge about the botnets’ actions. For this purpose 

we need to define the probability 𝑃(A | 𝑉𝑝) that the 

hypothesis A contains the data from the sample 𝑉𝑝. Let 

us evaluate a posteriori probability 𝑃(A | 𝑉𝑝) - the 

probability that the value of A depends on the actions 

of the sample 𝑉𝑝, using Bayes' theorem. 

Each botnets class 𝐾𝑙 is defined and represented 

by a set of pairs vectors 𝑣𝑧,𝑓𝑖1,𝑖2,𝑖3
 and 𝑣𝐴𝑃𝐼,𝑥,𝑓𝑖1,𝑖2,𝑖3 ,𝑚𝑢,𝑙. 

The sample 𝑉𝑝 belongs to the class 𝐾𝑙 with the 

highest value of the posteriori probability if and only 

if the condition is fulfilled: 
 

𝑃(𝐾𝑙1
 | 𝑉𝑝 ) >  𝑃(𝐾𝑙2

 | 𝑉𝑝  ), (2) 
 

For all 𝑙1 and 𝑙2, such that 0≤ 𝑙1 ≤ 6, 0 ≤  𝑙2 ≤
6, 𝑙1 ≠  𝑙2.  

So, we search for a class with the highest value of 

the probability 𝑃(𝐾𝑙  | 𝑉𝑝). 

In order to assign the vector 𝑣𝑝,𝑒𝑠
 to the botnet’s 

certain class, the product of the probabilities of API 

functions that were included into the vector of 

potentially suspicious actions is to be evaluated. For 

this purpose, the multi-nominal generative model, 

which takes into account the number of repetitions 

of API functions and does not take into account the 

absence of some API functions, was used. 

The definition of the membership of the vector 

𝑣𝑝,𝑒𝑠
 to the class 𝐾𝑦 or its subclass 𝐾𝑦,𝑔 is performed 

on the basis of the calculations of the probabilities 

for each class or subclass using Bayes classifier 

evaluations: 
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P(vp,es
| Ky,g) = 

=   P (|nvp
|) nvp

!  ×  

×   ∏ (
1

vp,K,es,w!  
( 

vAPI,x,w,fi1,i2,i3 ,g,l

∑ vAPI,x,w,fi1,i2,i3 ,g,l
mu,0

g=1

)

vp,K,es,w

)

nmu

w=1

 

 

(3) 
 

In order to conduct the training procedure, the 

probabilities 𝑃 (𝑣𝑧,𝑧𝑣,𝑓𝑖1,𝑖2,𝑖3
| 𝐾𝑦,𝑔) are to be processed. 

For this purpose, we evaluate the optimal estimates 

of the probabilities that some API function will be 

present in each class or subclass by modifying the 

result using the Laplace algorithm to avoid the 

"zero-frequency" problem: 

 

𝑃 (𝑣𝑧,𝑑,𝑓𝑖1,𝑖2,𝑖3
| 𝐾𝑦,𝑔) = 

 =
1+ ∑ 𝑣𝐴𝑃𝐼,𝑥,𝑏,𝑓𝑖1,𝑖2,𝑖3

,𝑔,𝑙

∑ 𝑙𝑔,𝑦
𝑚𝑢,𝑦
𝑔=1

𝑏=1  𝑃(𝐾𝑦,𝑔 
| 𝑣𝑧,𝑏,𝑓𝑖1,𝑖2,𝑖3

 )

𝑛𝑚𝑢+ ∑ ∑ 𝑣𝐴𝑃𝐼,𝑥,𝑑,𝑓𝑖1,𝑖2,𝑖3
,𝑔,𝑙

∑ 𝑙𝑔,𝑦
𝑚𝑢,𝑦
𝑔=1

𝑏=1  𝑃(𝐾𝑦,𝑔 
| 𝑣𝑧,𝑏,𝑓𝑖1,𝑖2,𝑖3

 )
𝑛𝑚𝑢
𝑑=1

  

(4) 

 

3.2 LEARNING PROCEDURE 

The learning procedure involves the following 

stages:  

1) definitions of the subclasses via one 

presentation of API functions for each of them, and  

calculation of the probabilities for each of the 

subclasses and classes, and their definitions as 

primary; 

2) for each known next variation of the 

presentation of the malicious botnet’s action via 

vector of API function, is to be classified by the 

Bayes classifier into the classes and subclasses;  

if the received presentation of the malicious 

botnet’s action is assigned correctly to the specified 

subclass, then its marked elements are added to the 

subclass as a separate sample;  

if obtained result does not classify it into the 

required subclass, it in this subclass, but at the same 

time comparisons with other values of the classes 

are to be performed; the result of the comparisons 

will be the deviation from initial values of 

probabilities;  

if the resulting probability is significantly (the 

threshold more than 10%) different from the primary 

probability of a subclass or class, then a new 

separate subclass of this class is to be created;  

for each learning stage the probabilities for each 

API function of the subclasses and classes are to be 

calculated; for those subclasses and classes, where 

the divergence with the primary classes is more than 

10%, a new subclass is to be created in its subclass;  

all probabilities obtained after several iterations 

are averaged and are considered as appropriate 

probabilities for use in further calculations; 

3) after the basic training phase is completed and 

the new data to Bayes classifier is added, the 

deviations verification for the additional subclasses 

is to be performed, and divergence between its mean 

probabilities values is to be evaluated;  

if the divergence value is less than 10%, then the 

subclass is added by the data of the additional 

subclass, and all probabilities and their mean values 

are to be recalculated; 

4) at each stage the difference between the mean 

probabilities’ values and the difference between the 

probabilities values obtained by the classifier are to 

be evaluated; if the difference is more than 10% for 

some subclasses, then training is to be continued for 

them by adding additional data and repeating the 

steps 1-3. 

The vector 𝑣𝑝,𝑒𝑠
 may not be assigned to any given 

class and subclass. It means that the analyzed object 

does not include probably malicious actions. This 

fact is based not only on the search for the maximum 

probability calculated by Bayes theorem, but also on 

the correspondence between this probability and the 

thresholds’ values of classes and subclasses defined 

during the classifier's learning process. This is due to 

the fact that the executable process represented by 

the vector 𝑣𝑝,𝑒𝑠
, may belong to benign software. In 

this case, further analysis is interrupted. 

The self-learning procedure is carried out 

according to the training scheme (steps 1-4). After 

the analysis of the vector of possible malicious 

actions is performed, its data has to be added to the 

class and its probabilities are to be calculated. If the 

deviations of the probabilities are within the 

specified thresholds for one of the subclasses, then 

after the classification is completed, its new data in 

its subclass is included and new calculation for the 

entire classifier and its mean values of probability 

deviations is performed. 

After the new item is added to the classifier of 

the program unit, the obtained information is sent to 

other program units of the distributed system for use. 

The decision concerning the location of the 

processing of the obtained vector of the malicious 

actions is determined on the basis of the computer 

system’s workload, in which these data were 

collected. If the workload is high, then obtained 

vectors are sent to other program units for 

processing. After the data processing is complete, 

obtained results are to be sent back.  

If the classifier analyzed software is assigned as 

the malicious, it is added to the classifier and is sent 

to all program units of the distributed system. 
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3.3 THE STAGES OF THE BOTNET 
DETECTION APPROACH BASED ON THE 
DISTRIBUTED ARCHITECTURE 

The botnet detection approach based on the 

distributed architecture involves the stages: 

1. Obtaining the information concerning the 

active processes using an active monitoring (starting 

from the first API function of each process that will 

be performed after the start of the computer system). 

2. Gathering the monitoring data into the vector 

after detecting possible malicious actions in the 

computer system. 

3. Formation of feature vector based on 

determined potentially malicious actions. The 

components the feature vector are the API functions. 

4. The decision making about the location of the 

feature vector processing. 

5. If the computing load of the computer system 

is low, then information is processed on this 

computer system, otherwise it is sent to another 

specified program unit of the computer system. 

6. The implementation of the vector classification 

and analysis of its results. 

6.1. If the feature vector has been assigned to one 

of the botnets’ class, then this information is to be 

sent to all classifiers of all program units. 

6.2. If the feature vector has been assigned to the 

several botnets classes, then other program units of 

the distributed system are to be involved for feature 

vector analysis. 

6.3. If the similarity with the available botnets’ 

classes is low, but other program units of the 

distributed system have made a decision that feature 

vector contains malicious action, a new botnet class 

is to be created, the classification information is to 

be updated and sent to all program units of the 

distributed system. 

6.4. If the analyzed feature vector does not 

contain malicious actions, then the analysis is 

completed. 

6.5. If the feature vector corresponds to malicious 

behavior, the analyzed executable is stopped. 

6.6. Search for the similar processes in other 

computer systems of the network using installed 

program units of the distributed system based on the 

obtained information. 

7. Calculation of the probability values for each 

program unit of the antivirus distributed system that 

the computer system is infected. 

Thus, the developed technique is able to detect 

new botnets and is based on the distributed 

architecture and with the use of the Bayes classifier. 

The architecture of the distributed system is 

presented in Fig. 2. 

 

 

Figure 2 –The architecture of the distributed system 

 

5. EXPERIMENTS 

The purpose of the experiments was to verify the 

efficiency of the botnet detection technique using the 

Bayes classifier. In order to carry out the 

experiments, 28 artificial botnets were constructed, 

grouped by classes. Mentioned botnet had the 

functional properties of the bots’ classes: Agobot, 

SDBot, Spybot, evilbot, DSNX, G-sys (remote 

control, usage of the system vulnerabilities, server 

attacks, system spying, etc). 

Obtained malicious programs included 25 

structural elements with three functioning stages 

which used 81 API functions [20]. Not all botnets 

used for experiments contained all possible 

structural elements and functions. 

Each malicious sample was presented as the 

vector taking into account the variations of its 

presentation via API functions, and all samples are 

assigned into the botnets and classes and subclasses.  

In order to conduct the experiment, the local 

network with 19 computer systems was employed. 

Each of the computer system contained the program 

unit without any other antivirus tools.  

First, a program unit used a classifier with no one 

of the generated botnets’ samples. One computer 

system contained the command control center, and 
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the control centers were located in 3 computer 

systems, and 15 computer systems were infected via 

botnet’s bots.  

The installation of the generated botnets was 

carried out alternately. The experiment being 

completed, all computer systems in the network 

were completely updated, except the classifiers.  

Each experiment for each botnet’s sample lasted 

96 hours. For the experiment, the botnets were 

selected that use the strategy of obtaining complete 

control over the computer system. 

The experiments involved the extraction of the 

vectors of possible malicious actions via API calls 

monitoring in the computer system. Obtained 

vectors were analyzed by the classifier of the 

program unit. The experiments were carried out 

concerning the trained and untrained classifier. 

The aim of the experiments was to determine the 

rates of the botnet detection efficiency for classes 

and subclasses using the Bayes classification. 

In order to evaluate the method efficiency, let us 

consider its main parameters: 

P1,1 and P1,2 - the rates of correctly classified 

vectors of botnets’ malicious samples concerning 

botnets’ classes using trained and untrained 

classifiers respectively; 

P2,1 and P2,2 - the rates of correctly classified 

vectors of botnets’ malicious samples concerning 

botnets’ subclasses using trained and untrained 

classifiers respectively; 

P3,1 and P3,2 – the rates of correctly identified 

computer systems as infected using trained and 

untrained classifiers respectively; 

P4,1 and P4,2 – false positives (for trained and 

untrained classifiers); 

P5,1 and P5,2– the rates of the malicious samples 

assigned to wrong botnet’s class using trained and 

untrained classifiers respectively. 

The results of the experiment for seven botnets 

classes are presented in Table 1. 

 

Table 1. The results of the experiment 

Parameter 

Resulting values for different classes Average 

value 
Class 0 

Class 

1 
Class 2 Class 3 Class 4 Class 5 Class 6 

P1,1  , % 90,74 84,29 73,66 86,30 94,04 94,18 96,60 89,44 

P1,2 , % 75,93 63,57 60,22 70,32 68,77 67,60 69,36 67,71 

|P1,1-P1,2|  , % 14,81 20,72 13,44 15,98 25,27 26,58 27,24 21,73 

P2,1  , % 85,80 83,57 72,58 85,39 98,88 93,92 96,60 88,42 

P2,2 , % 74,69 63,57 59,14 70,32 67,37 66,58 67,66 66,80 

|P2,1-P2,2|  , % 11,11 20 13,44 15,07 31,57 27,34 28,94 21,62 

P3,1 , % 92,11 84,21 71,93 89,47 90,53 88,42 93,68 87,72 

P3,2 , % 76,32 57,89 63,16 64,91 71,58 54,74 75,79 65,89 

|P3,1-P3,2|  , % 15,79 26,32 8,77 24,56 18,95 33,68 17,89 21,83 

P4,1 , % 7,89 14,47 28,07 10,53 7,37 11,58 6,32 11,70 

P4,2 , % 21,05 40,79 36,84 31,58 24,21 44,21 22,11 31,97 

|P4,1-P4,2|  , % 13,16 26,32 8,77 21,05 16,84 32,63 15,79 20,27 

P5,1 , % 0 1,32 0 0 2,11 0 0 0,49 

P5,2 , % 2,63 1,32 0 3,51 4,21 1,05 2,11 2,14 

|P5,1-P5,2|  , % 2,63 0 0 3,51 2,1 1,05 2,11 2,13 

 

The results of the experiment demonstrated, that 

the accuracy of the botnet’s samples classification is 

66% for the classifier without involvement of 

botnet’s samples and 88% for the classifier, which 

was trained using the generated vectors. The 

obtained results were averaged and their dispersion 

relative to the mean value is 1%. 

The difference of deviation for each class and 

subclass using trained and untrained classification 

execution was 21.5%. The dispersion for each class 

and subclass using two ways of classification was 

less than 5%. The rates of false positives using two 

ways of classification execution were 11.7% (trained 

classifier) and 31.97% (untrained classifier).  

The rates of assignment of the malicious samples 

to wrong botnet’s class using trained and untrained 

classifiers were 0.01% and 2.14% respectively. 
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6. CONCLUSION 

The paper presents a botnet detection approach 

for the distributed systems. The novel framework 

provides the ability to detect botnets. It consists of 

two parts: the host and the network levels.  

At the host level, the detection procedure is based 

on the implementation of the Bayes classification. 

The network level extends the results obtained at the 

host level to the rest of the local area network. The 

approach provides the exchange of the results 

obtained by the Bayes classification for further use 

by other program units of the distributed system.  

The results of the developed classifier show that 

representation of the botnets’ samples for different 

classes and subclasses is sufficient for efficient 

botnet detection. The results of the experiment 

demonstrated, that the accuracy of the botnet’s 

detection is up to 88%. 

 

7. THE FUTURE WORK  

The future work is to develop new methods for 

botnet detection, which will be focused on the 

architecture of the distributed systems. It should 

involve the advantages over the host methods, 

extending by new botnets samples for more efficient 

botnet detection. 
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