P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific
Journal of Computing

AVAILABILITY VERSUS PERFORMANCE

Pierre M. Fiorini ¥, Lester Lipsky 2

Y Department of Computer Science, University of Southern Maine, Portland, ME, USA, pfiorini @usm.maine.edu,
WWW.CS.usm.maine.edu
2 Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, USA,
| ester @engr.uconn.edu, www.cse.uconn.edu

Abstract: We discuss analytic procedures for evaluating the availability of parallel computer systems comprised of P
processors with N tasks subject to failures and repairs. In addition, we argue, via analytic and numeric examples, that
not incorporating the task-stream into the model is an inadequate approach for evaluating system performance.

Keywords: — Parallel and Distributed Processing, Performance Evaluation, Performability, Queueing Theory.

1. INTRODUCTION

There has been much research in the area of
studying the availability of paralld processing
systems (PPS) subject to failure and repair
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]. In
particular, they consider a system of P independent
processors with

[p.(¥)] = PrK(x)=Kk]for o<k <P (1)

where K(x) is the random variable (r.v.) dencting the
number of processors that are functional (available)
at time x. This, and other performance parameters
such at Mean Time To First Failure (MTFF) and
Mean Time Between Failures (MTBF), have been
studied in detail [9]. Some researchers have even
been able to solve for systems where failure and
repair times have general probability distributions.

This is an important contribution to ascertaining
the rdiability of any system. However, this
approach is inadequate for evaluating the
productivity, or performance, of a system as to
processing a set of N tasks (heresfter referred to as
the task-stream) since it is (often implicitly)
assumed that all resources that are available at any
time will somehow be used. The implication of this
is that system availability is independent or
decoupled) from the workload running on the
system.

Techniques have been developed that incorporate
the dependability and performance aspects of an
unreliable computing system in a performance
modd. For instance, Markov Reward Models

(MRM's) are commonly used to assess system
performabilty [2] [12]. By definition, performability
models characterize the interaction between the
availability of a computing system and its
performance [4]. Often times, when using MRM's,
rescarchers and practioners decouple the
dependability and performance aspects of the modd.
For instance, separate models are created that
represent system availability and performance
respectively. Each of the modds are solved
separately and later combined to generate system
performance measures (for some examples see [12]).
The reasoning behind this technique is: 1) When the
problem is formulated in this manner, it is easier to
solve numerically; and 2) This approach can
significantly reduce the required state space [12].
Unfortunatdly, if availability and performance are
separated in this way, then results can be inadequate
since most computing systems are too dynamic to be
represented in this manner. The reason is that in an
unreiable system, tasks can potentially see one or
more changes in the number of active processors
during their lifetime.

Thus, in order to properly describe the execution
of tasks in a changing environment, execution,
failure, and repair must be treated together. One way
to do this is utilize MRM's that do not decouple
system dependability and performance. These types
of models are known as integrated performability
models. In general, these modds are more desirable
than MRM's that separate system availability and
performance because the task-stream is more
faithfully represented. In other words, there will
aways be a time when there is not enough work

98

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

available to keep all available processors busy and
these modds capture that behavior. Indeed, in some
very interesting cases, the interaction between
execution and failure/repair is explicit. For instance,
if processors are subject to failure only when they
are activdly processing tasks, then availability
cannot be decoupled from the workload, for there
are times when there are fewer tasks in the systems
than there are available processors.

2. CONTRIBUTIONS

In this paper, we illustrate how a matrix analytic
approach can be to calculate expected performance
measures (e.g., availability) for an unreiable
computing system given any number of tasks and
processors, assuming the failure, repair, and task
times are exponentially distributed. A complete
analysis for non-exponential distributions is reserved
for future research, however, much insight can be
gained from this modd.

In addition, we investigate how availability
affects, and is affected by the task stream. We do
this by analyzing the job via epochs or task
completion points from which much insight can be
gained. Comparable work in this area has been done
using PH distributions, however, these approaches
consider the distribution of the entire job and not
individual task completion points (see, for example,
[13)).

Furthermore, it can be shown by using our
technique, the state space required to represent the
process of execution - failure — repair - execution is
substantially reduced. For example, the method
proposed by [13] requires N - (P + 1) states to
represent this process. The reason is that Kronecker
products are used (see [13]). On the other hand, our
method requires (P + 1) states — an improvement is
by a factor of N. This is important consideration for
whatever algorithm is utilized to compute
performance measures - especially as N and P get
large

3. THE MODEL
Consider a system with P identical, independent
processors that can fail, at

exponential rate o When failed, they are repaired
(one or more at a time, depending on how many
repairmen there are - here assumed to be 1) at
exponential rate S A job, made up of N
independent and identically distributed (iid) tasks,
must run on this syssem. Up to P
tasks run simultaneously, the rest reside in a waiting
line. If a processor fails while executing a task, the
task goes back in the waiting line, but when it
restarts later, it continues where it previously left

off. It is assumed task times are exponentially
distributed, with mean, 7= 1/A. A state, (k, j), in our
mode represents the number of processors that are
up (0 < k £ P), an the number of tasks that have
completed (1 <j < N). If one of the simultaneously
executing tasks finishes when the system is in state
(k, j), then the j™ task has completed. The state of the
system moves up and down as processors fail and
are repaired, and moves in a feed-forward manner to
the right when one of the active tasks finishes. The
period between departures is called an epoch, which
we denote by j. When an epoch completes, these are
called embedding points or epoch completion points
and indicates that a task has completed. For
example, when the first epoch completes, then the
first task finishes. Thus, the system enters state (K, |
+ 1). The job is completes when the system
transitions from one of the states whenj = N.
Let

y(k, j)=min[k,N - j+1] @)
be the number of active tasks when there are k

functional processorsin thej™ epoch. Then the
mean time spent at state (k, j) is Vu(k, j) for

(K1) = a1, (K, §)+ g (K,)+ (K).

Two different modeds for
processors fail are:

the rate at which

ok if idle processorsfall;
ay(k, j) if active processorsfail.

uO,(k,j):{

Also,

(K, §)=Ay(k, j)
is therate at which tasks finish, and

(k. j) 0 k=P (no repairs necessary);
Hpl] B k<P (onerepaired a atime).
is the rate at which processors are repaired.
Obviously, other choices for u; are possible (e.g., 15
(k, j) = B(P - K) — all processors have a sdf-repair
capability).

Define the k™ component of the state vector (a
row vector), [p(j)]« to be the probability that there
are k functional processors at the start of the j"
epoch. Then p(j) * € = 1 for al j, where ¢ is the
column vector with all 1's. In a normal state of
operation, a job would begin with all processors
functional. In this case the job starts in state (P, 1)
(the beginning of thefirst epoch), so

99

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

p1)=[10,0,..,0],

Note that for convenience we place the dements
inreverseorder. That is,

p(i)=1ps(i). Pes(i): Ppo(i): - 0.

There could be a scenario where if the system
fails (the system finds itsdf in state (O, j) then the
job must start from the beginning. In that case it
could restart when the first processor is repaired
(state (1, 1)). But now

p@)=10,0,...,1,0].

If one considers the set of states in column j to
describe the j™ epoch, then the (P + 1) x (P + 1)

infinitessimal generator matrix is given by:
uPi) -u,(Pi) . O]
—y(PJ) u(P-1j) .. O
B(l)=| ..
0 0 —11,(1.])
i 0 0 ;U,B(Oaj)_
©)

wherel = N —j + 1 isthe number of tasks remaining.
Again, the columns are listed in reverse order. For
instance, [B(l)ler = 4(P, j), and [B()]Joo = #4(0, J).
The reason for using | instead of j for labdling the
B'sisthat B(l1) = B(ly) for al Iy, 1, > P, independent
of N, if N> P.

The vector-matrix pair, <p(j), B(l)> generates the
evolution of the system during any epoch, for it can
be shown that the Reliability Matrix, defined by:

R(J |t)ik = [eXp(_B(l)t)]ik = Pr(Ki(t) =k i)

has the following meaning: Given that the | epoch
started with i functional processors, at time t there
will be k functional processors, and no task will have
finished. Therefore [R(j)€]; is the probability that
the j™ epoch will end after timet, given that it started
with i functional processors.

Note that in (1) x refers to the time since the job
began, while here, t is the time since the j™ epoch
began. Thus K;|(t) is the r.v. denoting the number of
functional processors at time t since the j™ epoch
began. The epoch points and x are not directly
related. Given some time x one would have to find
the probability that j tasks have finished (or that the

system isin epoch (j + 1)). On the other hand, the j
epoch could have begun at any time, so one would
have to find the probability that the | epoch began
at time x.

From the definition of p(j), it follows that

R(j [t)=p(})R(j [t)e’

is the rdiability function for the j" epoch. Let
V():=[BI)]™, then [V(I)]ik is the mean time that
there are k functional processors during the | epoch,
given that the epoch started with i functional
processors. Finally, we have the mean time for the
j™ epoch:

T(j)=p(j)V()e 4

Thetotal timeto completethejob is then

T(N):ZN:T(j) ®)

=1

We next define the Completion rate matrix for
thej™ epoch:

y(P,) 0 0O .. 0 O]
0 yP-14j) 0 ... 0 O
All)=4
0 0 0 .. y@j O
0 0 0 0 0]
(6)

and follows that B(l)eé= A(l)€. Therefore, it can be
shown the matrix, Y (1), defined by

Y()=V()A()

satisfies Y(I)¢ = &, i.e, it is a Markov matrix. It's
meaning is as follows. Given that epoch j started
with i functional servers, [Y(1)]i is the probability
that the next epoch will start with k functional
processors. Therefore, we can write:

p(j+1)=p(j)¥() (7)

As before, | = N —j + 1, and al V(I), A(l), and
Y () are independent of | for | > P. What we have
described above (the sequence of times, T(j)), is
known as a Markov Renewal Process. Only if Y(I)
is of rank 1, and is independent of | does the process
become a smple (actualy, ddayed) renewal
process. For then each epoch would be independent

100

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

of the previous one, and the T(j)'s, except for T(1),
would beiid.

4. AVAILABILITY IN THIS MODEL

We now examine where availability fits into our
modd. If we define Availability as the total time
available on functional processors, then this can be
calculated by defining the Processor Availability
Matrix,

‘P 0 0 ..00O
O P-1 0 .. 0O

All)=|...

Then

Alj)=p(i)V()Ae ®

isthetotal time that processors are available during
thej™ epoch. But

A=A() VISN-P,
therefore (where 7= 1/1),
Alj)=p(iVI)Ae =m(j)Y()e' =17,

since Y(I) = VI)A(l) and Y (1)€ = & for al .

A(j): Expected Availability During Epoch j, P =8, N=32, ¢
8

((x: oo
7

Comple \OV{ZOHE
6 (=025

=10, =10

// o ="0}50
3 /oc =0|75

Transient Zone sis. Zone //(x = 1l00
2 /

Expected Availability During Epoch j, A(j)

0 5 10 15 20 25 30 35
Epoch, j

Fig 1- Theexpected time processor sar e availableduring the
™ epoch, A(j), when P=8,N=32 #=1.0, and 7= 1.0 for o
between 0.00 to 1.00 inclusive.

Another parameter, processor activity, becomes
trivial in this modd where the assumption is that all
tasks restart where they left off. Since v(jk =
[PGV(D]k is the total time there are k functional
processors during epoch j, then using (2), Xk V(j)k

y(K,]) is the total time spent processing tasks in that
epoch. But from (6), y(k, j) = 4 A()]u, SO

z Dok, i)=m()V0)Ae
— (i)Y () =

In other words, the useful activity in each epoch
is exactly the time needed to process one task. Thus
the total useful activity to finish thewholejob is 7 N.
Aslong asj < N - P there are always enough tasks to
keep the processors busy, so for those epochs,
availability = activity. Fig. 1 demonstrates this
behavior.

T(]): Expected Time to Complete a Task During Epoch j, N=32, « =1.0, 7
1.4

T T
o—o P=8 N=32
+—f P=32 N=32 Completipn Zon
1.2

|
/
' /
A/ pd

{a‘ nnnnn Zone M%

e
0 5 10 15 20 25 30 35
Epoch, j

Expected Time to Complete a Task During Epoch j, T(j)

Fig 2 - The expected time time to complete the ™ epoch, T(j),
when P =8, 32and N =32 when ¢=0.50, = 1.0, and 7=
1.0.

Next observe that B(l) and A(l), and thus V(l),
Y (1) and R(j[t) are all independent of j aslong as j <
N - P, that is, as long as there are more tasks
available than there are processors. (In what
follows, we drop the dependence on j when j < N -
P. E.g, B(l) =B inthat range) Even so, the p(j)'s,
R(j|t)'s and T(j)'s only approach a constant value
with increasing j, assuming N is large enough. After
al, from (7) we seethat p(j) # p(j +1), and they only
approach each other as they approach the steady-
state vector, p, defined by

p=lim p(j)=pY 9)

jsN—>e

whereY = Y(I) for every | > P. Notethat oncel <P
al the matrices change with |. In the last P epochs
everything changes. Even so, we will call the region
jo <] £ N - P the steady-state (s.s.) zone (if it exists),
where jo is big enough so that the variation in the
p()'s is negligible. The region below jo is called the

101

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

transient zone, and we will call the region, | <P (N —
P < j £ N) the completion zone of the job. For the
mean completion time for the | epoch, from the
above discussion, it should be clear that when N = P,
there is no s.s. zone. Fig. 2 illustrates the above
behaviorswhen N >> P and N = P.

From the discussion preceding (4), it follows that
[pV]k is the mean time that there are k functional
processors during any epoch in the steady-state
zone, and since this doesn't change from epoch to
epoch, the s.s. probability of finding k functional
processors (in the s.s. zone) is

PM<=M=@¥Q,

where T = pV¢ isthes.s. value of T(j) from (4).

We see then, that the status of the hardware
(available processors) is decoupled from the task-
stream in the s.s. zone, but not in the transient zone.
Some researchers integrate the Chapman-
Kolmogorov equations from x = O to the s.s. zone to
find the availability of the system there. The total
availability, which in our model would be, from (8),

A<N>=i4A<j>=<N—P>T+ _ﬁA(j).

P

l

For finite N, the completion zone is treated
incorrectly if the hardware is decoupled from the
task-stream. After all, now there are fewer tasks than
there are processors, whether they are available or
not. This is particularly significant if only active
processors can fail. If N is not sufficiently large so
that the s.s. zone is insignificant, or even non-
existent, then the availability of processors will not
tell a proper story.

A(j): Expected Availability During Epoch j, P =32, N=32,1=1.0,p =1.0
35

o = 000

w
o

o =025

N
o

«.=.050

=
o

Transient:Zone

Expected Availability During Epoch j, A(j)
= N
@ S
— |
—_—

o

0 5 10 15 20 25 30 35
Epoch, j

0

Fig 3. - The expected time processor s ar e available
during the ™ epoch, A(j), when P =32, N =22, 8= 1.0,
and 7= 1.0 for a between 0.00to 1.00 inclusive.

Recalling when N = P, there exists no s.s. zone,
then from the viewpoint of the task-stream, the
system is always in the transient zone
Consequently, decoupling the availability from the
workload in this case will likely lead to misleading
measures regarding system availability. This
behavior is demonstrated in Fig. 3.

As a final comment, we would expect the
coupling of hardware to task-stream to be even more
important for systems where there are arrivals as
well as departures, for then the system will be
continually moving among the three zones.

5. AN EXAMPLE

Let us consider the simplest non-trivial example
for any N. First we mention that P = 1 (a ‘trivial’
case) is a dtraight-forward renewal process, where
each epoch is generated by the < p, B> pair:

-8 B
That is all epochs, including the first and last areiid.
The other quantities of interest are:

V=515 ot

o(i)=p=l 0] B<|>=B{“” ‘ﬂvj-_

and

YM:Y:F ﬂVL

00

From (4), T = (1 + 7), where y= o/ is theratio of
failure to repair rates. The availability vector (s.s. or
otherwise) is

_|_B a (| 1 vy
Pa™ a+f a+ B y+1 y+1|

The simplest non-trivial example is for P = 2. In
this case

p)=p=[1,0,0]

andfor 1<j <N (remember | =N—j + 1),

2A+200 -2a 0
B()=B2=| -8 a+p+1 -«a,
0 -p B

and

102

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

2 00
Al)=A2=40 1 0]
000

However the last epoch is different, since thereis
only onetask left, but there are 2 processors. So for |
=N (=12,

A+ za - 0
Bi=B()=| -8 a+B+1 -«
0 -B B
and
1 00

A1=A()=4/0 1 0].

We are considering two cases together. For z=1
only active processors can fail, while z = 2, idle
processors can fail as wel. Note that in al cases,
B()e=A(l) € V 1.

From its definition, it can be shown that

V2=[B2f*
BB+2) 20p 20’
1 B 2Ba+d) 20(a+A) |
2Lp 2prd) derprspl

(10)
where B, = |B,| = 28/ + B + |) is the determinant
of B,. Furthermore,

Y2=V2A-
1 p+A o O (11)
:+—+ﬂ ﬂ 05+ﬂ 0l.
a+p B a+d O

Additional calculationsyidd (for pY, =p)

it

a+pf a+p

1+ 2y + 29
2(1+y)

(12)
T2 = pVZgl =7

and

o= PV2 _ 15,208, 207] _11.2y.2¢|
*opv2e’ B20B,207 127,20
(pa); is the s.s. probability that a random observer
will find j processors avalable, and is the ss.
solution of the M/M/2/2 queue. T, is the mean time
per epoch when the systemisinthes.s.
The other matrices of interest are:

Yi=ViA:1
p+A zaa O
-t B za+A1 0]
za+ f+ A B za+i 0

What we want from these quantities are T(N) and
A(N), and then examine them to see how they
depend upon the task-stream, as represented by 7 (or
1/2) and N. From (4), (5), and (7) we have

N-1

nN>=zT<j>+T<N>=§m)vzgf+mvlgf

=

=p@{§xj>vz}2e'+m>vz“w.

We can give a closed-form expression for this by
finding the spectral decomposition of Y, which we
now do. First, the Spectral Decomposition Theorem
states that any matrix S, can be written in the
following form:

(14)

S= AnVyUn:

where

UnS: inun and SV,n = An V,m (15)

is normalized to satisfy u, ~ v,' = 1. (Recall that
objects like v,' - u, are square matrices of rank 1.)
That is, { An }, { un}, and { v,' } are the set of
egenvalues, |eft eigenvectors, and right egenvectors
respectively, of S. It is not hard to show that uy - vy’

=0for n# k. Therefore,

Sj = Zirj]nv,nUm for J > 0. (16)
n=1

Since Y(I)é= &, 1 is an eigenvalue of Y(I) with
rignt eigenvector £. All Y(I)’s dso share the
property that ther last column areall 0's (Y (l)o = 0,
V i). Consequently, they al have at least one
egenvalue of 0.

103

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

We now turn our attention specifically to Y, from
(12) to find an explicit expression for T(N) in (14).
Solving for ||[Y, — Al|| = O yidds three eigenvalues,
A=0, 4 =1, and

A

Gy

Solving for the eigenvectors from (15) and
substituting them into (16) where S =Y, we get
1 1 1
Y= {—,L,O}"‘é‘m 1 [01_111]
1+y 1+y
1
__]
1+y
i\ 7
+(1,)'| —— |[[-110],
(12) Ty [-11,0]
4
L 1+y

where ¢ is the Kronecker ddta function, which
equals 1 for i = j, and is O otherwise. We next need
to evaluate

This is easy enough since Y'“i(1)=N-1,
Z?;l5o,j—l =1land

N-1

1=
A2) 7=
Z()=

_a+pA|, (4 n
 a+p a+f+1 '

Putting this altogether, we get
0

X(N)=(N-2)ep+|0|[0,-11]
1

o+ f+ 1 vl Y
+w[1—(/12)]

[-110].

The three terms each have ther own meaning.
The first term provides the time as though the
system is aways in the s.s. The second term only
contributes if the system happens to begin with all
processors down, and the third term provides the
(initial) transient contribution.

We rdieve the reader of the burden of going
through the rest of the calculation. Suffice to say that
if one (carefully) places this expression, together
with (10) and (13) into (14), one gets
T(N)= (N -7+ 7, 222 25)

23 (ar+)

(zar+ A) 2+ B)+ B =207

2B(a+p) (za+ B+ A) Ae

17)
where T, isgivenin (12) and

Ba+ B)+(a+pBY + /l(ﬁz +of + 0(2)

Ti=pVie'+ Blo+ Bz + S+ A)

is the mean time for the last task (completion zone)
if the s.s. period had previously been reached (i.e., N
is large enough so that p(1)Y2"* = p). Any deviation
from this is included in the term containing (A,)™.

These are certainly too cumbersome expressions
from which to gain direct insight. But first notice
that if &= 0 (no failures), T, = #2; T, = 7, and T(N)
= 7(N+1)/2 as would be expected. The same results
occur if f— o (instant repair).

We net examine the limit of T(N) if W = 7N =
N/A is hed constant as N — « andt — 0 (or 4 —
o). First welook at (1)™*

N A N_ o+ W
(22) ‘[mﬁm} _[“] } '

It follows then from elementary calculus that

lim (1,)" = @V,

A—e0

Therest follows easily, yidding:

1+2y+22° y(d+2y) (+
20+y) 2B(+yf

The first term on the right is the time the job would
take if there were no transient effects, while the
second term gives the transient contribution, which
reduces to total execution time because initially all
processors are functional. The completion zone
doesn’t contribute in this limit, because only one job

lim T(N) =W W)

A—e0

104

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

remains at the end, and t — 0. The formula also tells
us that the s.s. region occurs if (o + AW >> 1 (the
exponential term goes to 0), but even then, the
effects of the transient region can be significant
unlessWisvery large.

6. CONCLUSIONS

There has been much research in the area of the
design, implementation, and performance analysis of
computing systems in the presence of failures and
repairs. In this paper, we discussed an analytic
procedure for evaluating the availability of a
computer system comprised of P processors subject
to failures and repairs. In addition, by using our
approach, we claimed the state space is reduced by a
factor of N compared to other techniques (see [13]).
In addition, via our analytic and numeric examples,
we argued that not incorporating the task-stream is
an inadequate approach for evaluating system
performance. Furthermore, we stated this would
especially be true in interactive environments where
both arrivals and departures could occur since the
system would be continuously moving between the
transient, steady-state, and completion zones.
Furthermore, we showed that when N = P, from the
viewpoint of the task-stream, the system is always in
the transient zone, thus, decoupling availability from
the workload in this case would likey lead to
misleading performance results.

7. REFERENCES

[1] L. Donatiello and B. R. lyer. Analysis of a Composite
Performance Reliability Measure for Fault-
Tolerant Systems, Journal of ACM 34 (1) (1987).
p. 179-199.

[2] B. Havakort, R. Marie, G. Rubino, and K. Trivedi.
Performability Modeling: Tools and Techniques.
Editors. Wiley, New York, 2002.

[3] P. Kandlakis and A. Shvartsman. Fault-Tolerant
Parallel Computation. Klumer Academic
Publishers, Boston, 1997.

[4] JMeyer. On Evalutating the Performability of

Degradable = Computing Systems, IEEE

Transactions on Computers (C-29) 8 (1980).

Mitrani and A. Puhalskii. Limiting Results for

Multiprocessor Systems with Breakdowns and

Repairs, Queueing Systems (14) (1993).

[6] I. Mitrani and P.E. Wright. Routing in the Presence of
Breakdowns, Performance Evaluation (20) (1994).

[7] H. Nabli and B. Sericola Performability Analysis: A
New Algorithm, IEEE Transactions on Computers,
45 (4) (1996).

[8] M.F. Neuts. Matrix-Geometric Solutionsin Sochastic
Models: An Algorithmic Approach, Johns Hopkins
University Press, Baltimore, 1981.

[9] S Osaki and T. Nishio. Reliability of Some Fault-

(5 I.

Tolerant Computer Architectures, Springer-

Verlag, New York, 1980.

RA. Sahner, K.S Trivedi, and A. Puliafito.

Performance and Reliability Analysis of Computer

Systems: An Example-Based Approach using the

SHARPE Software Package, Kluwer Academic

Publishers, Boston, 1996.

[11] K. Wolter and A. Zisowsky. On Markov Reward
Modeling with FSPN's. Proceedings of “4™
International Computer Performance and
Dependability Symposium’, Chicago, IL, March
2000.

[12] K. Trivedi, J. Muppala, S Woolet, and B. Havakort.
Composite Performance and Dependability
Analysis, Performance Evaluation (1992).

[13] A. Bobbio and K. Trivedi. Computation of the
Digtribution of the Completion Time When the
Work Requirement is a PH Random Variable,
Communications in Satistics - Stochastic Models,
(6) 1 (1990).

[14] M.F. Neuts. Structured Stochastic Models of the
M/G/1 Type and their Applications, Marcel
Dekker, New York, 1989.

[10]

Pierre M. Fiorini is an Assistant
Professor of Computer Science at
the University of Southern Maine.
He received the Ph.D. degree
from the University of Connecticut
in Computer Science &
Engineering (1998), an M.S. in
iy Computer Science & Engineering
from the University of Connecticut (1995), and a
B.S. in Computer Science from Trinity College
(1989). His research interests include Queueing
Theory, Computer Performance Modeling, Network
Modeling, Stochastic Processes, and Computational
Intelligence. He is a member of the IEEE and ACM.

Lester Lipsky is a Professor of
Computer Science & Engineering
at the University of Connecticut.
He holds the Ph.D. degree from
the University of Connecticut in
Theoretical ~ Atomic Physics
(1965), an M.S. in Physics from
Brandeis University (1958), and a ’ :
B.M.E in Mechanical Engineering from the City
College of New York (1956). His research Interests
include: Queuing Theory (Linear Algebraic
Approach), Computer System Performance
Modeling, Network Modeling, Stochastic Processes
Related to Telecommunications, and Computational
Atomic Physics. He is the author the text entitled,
Queueing Theory: A Linear Algebric Approach
(MacMillan & Co.) and a member of the IEEE, ACM,
Sigma Chi, Upsilon Pi Epsilon, and the American
Physical Society.

105

