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Abstract: Evaluating the number of hidden neurons necessary for solving of 
pattern recognition and classification tasks is one of the key problems in artificial 
neural networks. Multilayer perceptron is the most useful artificial neural 
network to estimate the functional structure in classification. In this paper, we 
show that artificial neural network with a two hidden layer feed forward neural 
network with d inputs, d neurons in the first hidden layer, 2d+2 neurons in the 
second hidden layer, k outputs and with a sigmoidal infinitely differentiable 
function can solve classification and pattern problems with arbitrary accuracy. 
This result can be applied to design pattern recognition and classification models 
with optimal structure in the number of hidden neurons and hidden layers. The 
experimental results over well-known benchmark datasets show that the 
convergence and the accuracy of the proposed model of artificial neural network 
are acceptable. Findings in this paper are experimentally analyzed on four 
different datasets from machine learning repository.  

Copyright © Research Institute for Intelligent Computer Systems, 2020.  
All rights reserved. 

 
 

1. INTRODUCTION 

The past two decades have seen an enormous 
change in the field of artificial neural networks and 
their applications. Especially, there has been a 
considerable growth of progress in a multi-layer 
feed-forward neural network [1-4]. The application 
areas of artificial neural network include wide fields 
in computer science, biology, decision science, 
medicine, finance, engineering, etc. While solving 
applied problems, one can use various kinds of 
architectures of neural network with some 
appropriately chosen activation functions. If a 
constructed artificial neural network model is not 
capable to solve a specific problem or to give 
acceptable precision, they increase hidden units 
(neurons) in the layers and/or increase hidden layers 
on the network model. However, in applications it is 
necessary to define or indicate how many neurons 
and how many layers one should take in the neural 
network architecture. Of course, the larger the 
number of neurons and hidden layers is, the larger 
the probability of the network to give more precise 
results is. Unfortunately, practicality decreases with 
the increase in the number of neurons and the 

number of hidden layers in the neural network 
model. 

Researchers of artificial neural network have 
proposed and experimented various kinds of neural 
network models exploiting multi layered 
architectures, for instance, convolutional neural 
networks [5], cascade neural networks [6], deep 
neural networks [7,8], graph neural networks [9], 
recurrent neural networks [10], etc. 

These above proposed models have found a 
broad application to challenging issues in various 
fields, for instance, in health services [11], natural 
language processing [12], neural signal processing 
[13], robotics and instrumentation [14, 15], and data 
mining [16, 17], classification [25]. 

However, from a theoretical view, problems of 
the lower and upper bounds of neurons in hidden 
layers and the bounds of hidden layers to 
classification and pattern recognition architectures 
have not been completely studied yet. For instance, 
one of the current existing findings is related to 
binary neural networks [18]. They defined a 
structure named a most isolated samples in the 

Boolean field and proved that at least 12n  hidden 
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neurons are necessary in binary neural network. 
However, these kinds of findings are restricted to 
specific situations and do not provide a fundamental 
theory for studying the computational capabilities of 
neural network in general. Also, there can’t be made 
any extension of those existing results to feed-
forward neural network, such as layered feed- 
forward neural networks with some activation 
functions. 

In addition, previous works on evaluating the 
number of hidden layer neurons related with the 
capabilities of the feed-forward networks [19-23]. In 
[24, 26], authors proposed to apply the singular 
value decomposition method in neural networks to 
estimate the number of hidden neurons. However, 
algorithms for computing the singular value 
decomposition is time consuming process. In 
addition, in [27] a new approach was proposed to fix 
the number of hidden neurons of multi-layer 
perceptron (MLP) architecture. They proposed an 
approach that consists of the post training 
employment of the singular value decomposition 
and principal component analysis (PCA) method to 
adjust parameters of network. The number of hidden 
neurons is then fixed to the number of singular 
values or eigenvalues, which is obtained from 
operations over matrices. 

In [28], authors investigated to fix the bounds of 
the number of hidden neurons in a special type of 
network, which is called multi-valued multi-
threshold neural networks. They studied neural 
network properties with q -valued function defined 

on some space. The obtained results can find 
implementations to build learning algorithms with 
training set of finite numbers. 

In other words, neural networks are not always 
effective if the number of neurons in the hidden 
layer and the number of layers are prescribed 
without theoretical background. In the current paper, 
we show that there exists optimal architecture for 
neural networks with two hidden layers. We want to 
give that a two hidden layer neural network with 
infinitely differentiable sigmoidal activation 
function  , d   neurons in the first layer, 2 2d   
neurons in the second layer, k  outputs and the 
ability to solve classification and pattern recognition 
problems within given arbitrary precision. 

A single hidden layer neural network model with 
r  neurons in its hidden layer and the input 

 1, , dx x x   evaluates a function of the 

following form  
 

 
1

,
r

i
i i

i

c w x 


   

 

where the weights 
iw  are vectors in d , i  – 

threshold values and ic - the coefficients in real 

numbers and  - is a univariate function, which is 
called activation function in neural network 
literature. 

 
2. PROBLEM STATEMENT 

A two hidden layer neural network architecture is 
defined by iteration of hidden layers. In general, 
artificial neural network with two hidden layers, 

input  1, , dx x x  , r  neurons in the first hidden 

layer, s  neurons in the second hidden layer and 

output  1, , ky y y    is as follows: 
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where 
     , , ,s s

p p p p pq pd d c     are real 

numbers, pqw  is a real matrix and   is a fixed 

univariate function. In neural network literature, 
such functions are called sigmoidal activation 
functions [33].  

In the current study, we are going to give proof 
that there exist two hidden layer neural network with 
infinitely differentiable sigmoidal activation 
function , d  neurons in the first hidden layer, 

2 2d   neurons in the second hidden layer, k  
outputs and with the ability to solve classification 
and pattern recognition problems within an arbitrary 
accuracy.  

Definition 1. A univariate function    defined 

on   is called a sigmoidal activation function if the 
following conditions are met:  

 

   lim 1, lim 0.
x x

x x 
 

   

 
The sigmoidal activation function is a special 

type of function, which plays a significant role in the 
research of artificial neural networks, especially in 
classification and pattern recognition problems. 

In this current paper, we use the sigmoidal 
activation function, which is defined as follows: 
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1 x

x x
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where     is a constant. 
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3. THE MAIN RESULT 

Our result is based on the capabilities of the 
universal approximation property of the neural 
networks. Neural network can do approximation of 
any continuous function on any compact subset of 

  with a given arbitrary precision. Kurkova’s 
results [29, 30] showed that an arbitrary continuous 
function can be approximated arbitrarily quite well 
off by two hidden layer neural network with a 
univariate sigmoidal activation function. However, 
according to these findings, the number of neurons 
(units) in the hidden layers needed to implement the 
approximation is exceedingly large. The problem of 
fixing the number of neurons in the hidden layers 
was first solved by Mairov and Pinkus [32]. They 
showed that there exists a two hidden layer network 
with a sigmoidal activation function for which it is 
sufficient to do approximation arbitrarily enough of 
any continuous multivariate function. 

Later, the best result was obtained by Vugar [31] 
for two hidden layer feed-forward networks. 
Namely, he showed that a two hidden layer neural 
network with d  inputs, d  neurons in the first 

hidden layer, 2 2d   neurons in the second hidden 

layer and with a specifically constructed sigmoidal 
and infinitely differentiable activation function can 
do approximation of any continuous multivariate 
function with a given (arbitrary) precision. 

We extend the above mentioned approximation 
properties to multivariate output neural networks. 
Namely, we show that artificial neural network with 
a two hidden layer neural network with d  inputs, d  

neurons in the first hidden layer, 2 2d  neurons in 

the second hidden layer, k  outputs and with a 
sigmoidal and infinitely differentiable activation 
function can solve classification and pattern 
recognition problems with arbitrary accuracy. 

We continue this section with the definition of a 
 -increasing ( -decreasing) function which is 

given in [31]. Let 0   be any real number on .  

A real function f  defined on  ;a b  interval is 

called  -increasing ( -decreasing) if there exists a 

function  : ,u a b   which is also an increasing 

(decreasing) on  ;a b  interval such as 

   f x u x   , for  , .x a b   If a function 

u  is strictly increasing (decreasing), then the above 

function f  is also called a  -strictly increasing 

(  decreasing) function. 

On the k -dimensional space k consider a 
Euclidean norm 

 
2

1
1

,  , , .
k

i d
i

x x x x x

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Theorem 3.1. Let Q  be a compact set in d . 

For any positive real numbers   and   there exists 

a  R , sigmoidal activation function 

:    which is strictly increasing on  , , 

 -strictly increasing on  ,  , and satisfies the 

following properties: For any  , kf     and 

0   there exists k -dimensional real vectors 
     , , ,s s

p p p p pq pd d c     and real matrix 

pqw  for which 
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for all  1, , dx x x Q  . 

Proof. For each 1i k   define projection map 

: k
i    as follows 

 

   1,  , , .i i dx x x x x   
 

 
Then for each 1i k   a function 

: d
if      satisfies all conditions of Theorem 

2.1 from [31]. Then by Theorem 2.1 for each 
1i k   there exist k -dimensional real vectors 

     , , ,s s

p p p p pq pd d c     and real matrix 

pqw  
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Further 
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The proof is completed. 
Remark 1. In some papers, a single layer 

network is defined as function 
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  0
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A two hidden layer network then takes the form 

as follows 
 

     
0

1 1

.
s r

i i

p pq pq pq p
p q

d c w x d   
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From the proof of Theorem 3.1, for networks of 

type (2) the theorem is valid if we take 2 1d 
neurons in the second layer, instead of 2 2d  . 

 
4. SIMULATION RESULTS AND 

DISCUSSION 

We have investigated the performance results of 
the training/testing process using the obtained 
criteria from Theorem 3.1, on four types of 
classification datasets: (a) Iris datasets, (b) 
Australian, (c) Wine and (d) Spambase, which are 
well-known benchmark datasets from the UCI 
Machine Learning database 
(https://archive.ics.uci.edu/ml/index.php). We 
constructed the neural network architecture as stated 
in the problem statement section: a two hidden layer 
feed-forward neural network with infinitely 

differentiable sigmoidal activation function , 
which has d  neurons in the first hidden layer, 
2 2d  neurons in the second layer and k  outputs. 
The neural network model for each dataset was 
trained and tested to guarantee that it is sufficiently 
trained. The standard back-propagation method was 
performed using a batch learning. 

Figure 1 shows the training process for the 
Australian dataset, while Table 1 shows the training 
and testing results, and the proposed number of the 
hidden neurons and the number of hidden layers 
using criteria which are given in Section 3.  

 

 
Figure 1 – Training process (Australian data set) 

Table 1. Accuracy results for pattern recognition 

Data set Input 
size 

Output 
size 

Number of 
neurons in the 
hidden layers 

Number 
of epochs 

Classification 
accuracy on training 
set (%) 

Classification 
accuracy on testing 
set (%) 

Iris 4 3 4x10 72 100.0 100.0 
Australian 14 2 14x30 254 100.0 100.0 
Wine 13 3 13x28 104 100.0 98.75 
Spambase 57 2 57x116 1287 98.25 97.50 

 
Figures 2-5 show training and testing accuracies 

for selected benchmark datasets, and the proposed 
number of hidden neurons and hidden layers using 
criteria which are given in Section 3. The “Number 
of neurons” axis in Figures 2-5 depicts the number 
of the first hidden layer ( d -neurons) and similarly, 
the number of the second hidden layer neurons is 
calculated according to the first layer neurons 
amount. From the simulation results, increasing the 
number of hidden neurons in the first hidden layer 
and in the second hidden layer more than d   and 
2 2,d   respectively, we can see that there is no 

need for that. 
From the experimental results on well-known 

benchmark datasets, the convergence and the 
accuracy of the proposed model of neural network is 
acceptable and even better than we have expected. 

 

 
 

 
Figure 2 – Iris dataset 
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Figure 3 – Australian dataset 

 
Figure 4 – Wine dataset 

 
Figure 5 – Spambase dataset 

 

5. CONCLUSION 

In this paper, a theoretical result has been 

obtained on the constructing feed-forward neural 

networks for setting the number of hidden neurons 

and the number of hidden layers. The proposed 

result can be helpful to design a proper architecture 
of feed-forward neural networks (two hidden layers) 

with multivariate outputs. The theorem formulated 

in this paper provides a compact neural network 

architecture on the size of the feature space of input 
data to have a minimum degree of training 

complexity with sufficient number of parameters. In 

a nutshell, this can produce a compact 

classification/recognition model of high 

generalization with a relatively fast training time. 
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