
S.Koschinsky, A.Sholonik, P.Ustinov / Computing, 2003, Vol. 2, Issue 1 (#3), 73-78 

 

 

 
 
 
 
 

SYMBOLIC MODELS OF THE PULSE ENERGY  
CONVERSION SYSTEMS DYNAMICS 

 
Koschinsky S.L., Sholonik A.P., Ustinov P.S. 

 
Radioelectronics Department,  

State Technical University of Orel, 
29, Naugorskoye Shosse, 302020 Orel, Russia,  

tel: 7 0862 419879, fax: 7 0862 416684,  
e-mail: kipra@ostu.ru 

 
Abstract: The derivation of developed symbolic models of dynamics of voltage mode controlled buck converter 
operated both in discontinuous and continuous conducting modes is given. 
 
Keywords: - Symbolic model, symbolic characteristic, nonlinear dynamics, buck converter. 

 
1. INTRODUCTION 

Pulse energy conversion systems (PECS) are 
widely used in modern energetics. PECS are 
complex, essentially nonlinear systems with 
complicated dynamics. There is a great number of 
undesirable stationary modes except synchronous 
one could be possibly realized in PECS. The 
appearance of such mode will lead to essential 
increase of the current and voltage ripples in PECS 
elements as well as to essential degradation of the 
output energy quality. To exclude these undesirable 
modes the research of PECS dynamics should be 
realized at PECS design stage.  

The mathematical model of PECS as an 
essentially nonlinear system is commonly 
represented as a system of ordinary differential 
equations 
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where   ),,( tPXG  is the piecewise smooth vector 

function; },...,,{ 21 nxxx=X  is system state vector; 

},...,,{ 21 sppp=P  is system parameters vector. 

Let ),...,,( 21 spppP  to be the space of the 

system parameters. There are different trajectories 
defined in system (1) extended state space (X, t). 
The specific structure of state space (X, t) can be 
defined to any point p∈P and consists of a number 
and placement of stationary trajectories. The space P 
is divided into regions Pk that are corresponded to 

topologically equivalent structure of the extended 
state space (X, t). When system parameters P are 
bifurcational the topological structure of space (X, t) 
changes. The geometrical place of the bifurcational 
points defines some bifurcation surface in space P. 
Thus the research of the system (1) dynamics can be 
considered as the composition of the bifurcation 
boundaries for Pk regions and analysis of the specific 
structure of the state space for these regions [1]. 

The linguistic description of PECS dynamics that 
is used at present time seems to be very clumsy. This 
disadvantage makes inconvenient the detailed 
research of PECS dynamics. An effective tool to 
provide PECS dynamics analysis is the usage of 
symbolic description of its dynamic modes [1, 2]. 
For example, symbolic models of dynamic modes 
are efficiently used for analysis of mechanic systems 
with dry friction and vibration shock  [1]. Both the 
considered in [1] mechanic systems as well as PECS 
have similar mathematical models with 
discontinuous right-hand part (1). The symbolic 
model of dynamic mode is the sequence of symbols 
corresponded to the sequence of intervals of (1) 
structure constancy where considered dynamic mode 
is defined. PECS symbolic models that are 
composed on the base of description [1] with 
additional rules and signs reveal types of PECS 
bifurcation boundaries and simplify the analysis of 
PECS dynamics. 

This paper deals with derivation of developed 
symbolic models of dynamics of voltage mode 
controlled buck converter operated both in 
discontinuous and continuous conducting modes. 
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2. MATHEMATICAL MODEL OF THE 
BUCK CONVERTER 

Equivalent scheme of the buck converter is 
shown in Fig. 1. 

Mathematical model of the power unit of the 
buck converter corresponding to equivalent scheme 
(Fig. 1) has the form: 
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X  is state variables vector; i(γ) 

is the inductor current; u(γ) is the capacitor voltage; 

T

t=γ , ]1,0[∈γ  is the relative pulse duration; T is 

the PWM clock instant; 
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square matrices and column vector determined by 
element values of equivalent scheme in Fig.1. 

 

 
Fig. 1 — Equivalent scheme of the buck converter. 

Controller realizes trailing edge pulse-width 
modulation and proportional control of the output 
voltage. The pulse function KF0 in model (2) is 
calculated according to the algorithm 
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where γ0 is the switch moment corresponding to 
transition of К0 switch to non-conducting state and 
diode VD to conducting state. 

 
Value ]1,0[0 ∈γ  is evaluated as the least root of 

the equation which determines a surface where the 
right-hand part of (2) has discontinuities 
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where α  is the proportional gain; β  is the gain of 

the output voltage sensor; refU  is the reference 

voltage; U0 is the sawtooth voltage amplitude; С0 is 
the row vector which sets up a correspondence 
between X(γ) and the voltage value of the controller 
input (uout). 

 
The pulse function KF1 in model (2) is calculated 

according to the algorithm 
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where γ1 is the switch moment corresponding to 
transition of diode VD to non-conducting state. 

 
Value ]1,[ 01 γγ ∈  is evaluated as the least root of 

the equation 
 

0)())(( 11 =⋅= γγζ XСX , ( )011 =C . (6) 
 

3. ELEMENTS OF THE GEOMETRICAL 
STRUCTURE OF THE BUCK 
CONVERTER STATE SPACE 

Let G to be considered state space of buck 
converter model (2-6). There are three pairs of the 
values of pulse functions  KF0, KF1 — (KF0=1; 
KF1=0), (KF0=0; KF1=1), (KF0=0; KF1=0) which may 
be realized physically in PECS. There are three 
states of the system (1) respectively to every pair of 
pulse functions and thus we can determine domains 
G1, G2, G3 in G space for each system (1) state. The 
transition of the state point in these domains is 
determined by (2) on the intervals of the structure 
constancy. Surfaces S1, S2, S3 are the boundaries of 
the G1, G2, G3 domains (Fig. 2): 

 
0)),((0 =≡ γγζ XS1 ; 0=≡ γ2S ; 

0))((1 =≡≡ γζ XGS 33 .           (7) 

 
Surface S2 is divided in two components: 
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Suppose that intersection of surfaces S2(2) and S3 

belongs to the surface S3, and intersection of 
surfaces S2(1) and S3 belongs to the surface S2(1). The 
transition of the state point in the domains G1, G2, 
G3 between surfaces S1, S2(1), S2(2), S3 (7, 8) 
corresponds to change of the buck converter state. 

 

 
 

Fig. 2 — State space of the buck converter. 

During this transition state point draws some 
trajectory. There are parts of the trajectories which 
are placed between two surfaces on which system 
structure doesn’t change. Such parts of the trajectory 
we call the simplest parts. If we take into 
consideration above-mentioned surfaces there are 16 
simplest parts which have quantitative differences. If 
the start point of the simplest part belongs to the 
surface i and the end point belongs to the surface j 
we  denote such part as aggregative symbol ij. For 
example, the start point of the part belongs to the 
surface S1 and the end point belongs to the surface 
S2(1). We denote this part as 12(1). 

From 16 simplest parts we mark those, which 
satisfy the following conditions: 

1) the parts may be realized physically; 
2) there is a satisfaction of one of the next 

conditions: 
2.1) system structure changes at the end point of 

the part; 
2.2) end point of the part belongs to the surface 

S2. 
10 from 16 possible simplest parts satisfy these 

conditions. There are 12(1); 12(2); 13; 2(1)1; 
2(1)2(1); 2(2)2(1); 2(2)2(2); 2(2)3; 32(1); 33. 

The simplest parts 32(1), 33 correspond to 
sliding motions [3]. 

Under sliding motion we consider transition of 
the state point in the subspace which dimension is 
less than dimension of the basic state space, i.e. 
transition on the surface where right-hand part of the 
system of equations (2) has a discontinuity. If there 
is sliding part in the trajectory of some mode we call 
it sliding mode or for this model — discontinuous 
conducting mode. 

It is necessary to add a concept of the simplest 
trajectory. The simplest trajectory is a sequential 
combination of the few simplest parts. These 
simplest parts belong to the neighbour surfaces S2. 
We apply the sequential notation of the indices of 
simplest parts for notation symbolic characteristic of 
the simplest trajectory. These indices  are separated 
by dot. 

Two simplest trajectories are the same type 
trajectories if they consist of the same sequence of 
the simplest parts. Under domain of existence of the 
simplest trajectories of the same type we consider a 
part of the surface S2 to which these trajectories 
belong. 

In researching buck converter model with PWM 
there are 11 types of the simplest trajectories, each 
of them exclude the first, has similar type (Table 1). 
Similarity of the trajectories means that the same 
transition sequence of the switching elements  of the 
equivalent scheme (K0 and VD) corresponds to these 
similar trajectories. 

Simplest trajectories may consist of one, two or 
three simplest parts. Simplest trajectories 1, 2, 3, 6, 7 
don’t consist of the sliding parts. 

 

Table 1. Simplest trajectories of the buck converter 
model 

Type Trajectory γγγγ0 γγγγ1 
1 2(1)2(1) 1 0 
2 2(1)1.12(1) z1 1- z1 
3 2(1)1.12(2) z1 1- z1 
4 2(1)1.13.32(1) z1 z2 
5 2(1)1.13.33 z1 z2 
6 2(2)2(2) 0 1 
7 2(2)2(1) 0 1 
8 2(2)3.32(1) 0 z2 
9 2(2)3.33 0 z2 
10 32(1) 0 0 
11 33 0 0 
 
Here z1, z2 — random real values on the interval 

[0;1]. 
If some the simplest trajectory (next) is 

continuation of another simplest trajectory 
(previous) and taking into the consideration that 
state variables can’t change discontinuously in the 
model (2-6), symbolic characteristic of the next 
simplest trajectory starts from the symbol which had 
been the last symbol of the previous symbolic 
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characteristic. On the base of this rule it is possible 
to composite symbolic characteristics of any 
dynamic mode. 

The simplest trajectories possible transitions 
structure is shown in Fig. 3. In Fig. 3 simplest 
trajectories are marked by circles and the possible 
transitions of simplest trajectories are marked by 
curves with arrows. 
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Fig. 3 — Graph of simplest trajectories transitions. 

 
Simplest trajectories which contain sliding parts 

showed with shadowed circles. 
The closed route in graph Fig. 3 which consists 

of simplest trajectories and contains m vertexes 
corresponds to buck converter stationary mode with 
period mT. It is necessary to take into account that 
the existence of the closed route of the graph of  
simplest trajectories transitions is a necessary but not 
sufficient condition of stationary periodic mode 
existence. 

The transitions which correspond to potentially 
possible modes with periods 1T, 2T  and equilibrium 
points are showed in Fig. 3 by thick arrows. 
Symbolic characteristics of the potentially possible 
modes with period-2T are the following: 1,1; 2,2; 
4,4; 6,6; 11,11; 1,2; 1,4; 2,4; 3,7; 3,8; 5,10. It is 
possible to composite symbolic characteristics of the 
potentially possible modes with high periods by 
means of determination of the closed route of the 
graph of simplest trajectories transitions. 

 
4. EXAMPLE OF THE BUCK 

CONVERTER DYNAMICS SYMBOLIC 
DESCRIPTION 

There is a notation of the buck converter 
bifurcation boundaries: 

B1 — border crossing bifurcation; 
B2 — period doubling border crossing 

bifurcation; 
B3 — border collision pair bifurcation; 
B4 — period doubling N-bifurcation; 
B5 — saddle-node bifurcation; 
B6 — period doubling and chaos border crossing 

bifurcation; 
B7 — border collision pair bifurcation 

(possibly). 
Subharmonic modes mT are denoted by symbol 

Пm.j(a1, a2, …an). Indices  m, j are separated by dot. 
Index m is a frequency multiplicity of the 
subharmonic mode to the PWM clock instant, index 
j is used to distinguish subharmonic modes with the 
same period. An expression between the brackets 
(a1, a2, …an) is a symbolic characteristic of any 
mode where a1, a2, …an are types of trajectories in  
Table 1. Symbol П with underlining denotes an 
instability of the respective mode. Bifurcation 
boundaries are denoted by Г symbol and by value 
that denotes boundary number. 

A two-dimensional (2-D) piecewise smooth map 
of the buck converter dynamic modes is shown in 
Fig. 4. This 2-D map is observed by load impedance 
R3 from 2 to 50 Ω variation and by proportional gain 
α from 2 to 27 variation. The numerical values of 
the model (2-6) parameters are the following: R1 = 
0,1 Ω; R2 = 0,1 Ω; L = 10-4 H; C = 10-5 F; E = 24 V; 
β = 1; U0 = 3 V; Uref = 12 V; f = 105 Hz.  

The description of the bifurcation boundaries on 
which synchronous modes disappear or become 
unstable is tabulated in Table 2. 
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Fig. 4 — A 2-D piecewise smooth map of the buck 
converter dynamic modes. 
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Let us demonstrate some examples of bifurcation 
boundary notation reading (from Table 2). 

For example, let us consider the second string of 
Table 2. Increasing of the load impedance R3 leads 
to the stable synchronous mode П1.1 with symbolic 
characteristic 2 (Table 1) transits to the stable 
synchronous mode П1.2 with symbolic 
characteristic 4 (Table 1) at the Г1 boundary (Fig. 4) 
due to border crossing bifurcation. Symbolic 
characteristic 2 (Table 1) means that K0 switch is in 
conducting state and diode VD is in non-conducting 
state at the beginning of the PWM clock instant. 

 

Table 2. The buck converter bifurcation boundaries 
description 

N
o.
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Bifurcation transition 

B
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Г1 R3↑ П1.1(2)→П1.2(4) В1 
Г2 R3↓ П1.2(4)→П1.1(2)+П2.2(2,4) В2 
Г3 R3↑ П1.1(2)→П1.2(4)+П2.3(2,4) В2 
Г4 α↑ П1.1(2)→П1.2(4) В1 
Г7 α↓ П1.2(4)→П2.4(4,4)+П1.2(4) В4 
Г8 α↑ П1.1(2)→П1.1(2)+П2.1(2,2) В4 

 
K0 switch transits to non-conducting state and 

diode VD — to conducting state at γ0T within PWM 
clock instant. During (1 - γ0)T within PWM clock 
instant state of the switches is still unchangeable.  
Symbolic characteristic 4 (Table 1) means that K0 
switch is in conducting state and diode VD is in non-
conducting state at the beginning of the PWM clock 
instant. K0 switch transits to non-conducting state  
and diode VD — to conducting state at γ0T within 
PWM clock instant.  Diode VD transits to non-
conducting state at γ1T within PWM clock instant.  
During (1 - γ0 - γ1)T within PWM clock instant state 
of the switches is still unchangeable.  

For example, let us consider last string of Table 
2. Increasing of the  proportional gain α leads to the 
stable synchronous mode П1.1 with symbolic 
characteristic 2 (Table 1) losses stability and the 
stable subharmonic mode П2.1 with double period 
and symbolic characteristic 2,2 (Table 1) occurs at 
the Г8 boundary (Fig. 4) due to period doubling N-
bifurcation. 

 
5. CONCLUSIONS 

In this paper we have developed symbolic 
models of buck converter that demonstrates it 
efficiency over detailed bifurcation analysis in 
parameter space. An application of compact notation 
gives important information for analysis the 
regularities of the dynamic processes in the buck 

converter. It is necessary to take into account that 
this symbolic models are not unique. Any researcher 
has a possibility to composite his own variant of 
similar modeling according to the peculiarities of the 
pulse energy conversion systems. 

An application of the symbolic models for the 
analysis of qualitative and quantitative changes of 
the quasi-periodic and chaotic motions is very 
perspective according to authors opinion. 
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