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Abstract: This paper presents the developed by the authors step-by-step 
neuroevolution based approach to designing control systems for complex 
multicoordinate interrelated plants (MIP). The proposed approach allows us to 
build the structure of the automatic control system (ACS) for the MIP on the 
basis of the single complex neural controller (NC) with multiple inputs and 
outputs as well as to implement the effective training of its multilayer neural 
network (NN) by means of the evolutionary based algorithm, taking into account 
the mutual influence of all variables of the MIP in an optimal way. In order to 
study and validate the efficiency of the presented approach the design of the 
ACS for the spatial motion of caterpillar mobile robot (MR) able to move on 
inclined and vertical ferromagnetic surfaces is carried out in this work. The 
developed ACS based on the NC with optimal structure allows us to achieve 
high quality indicators of spatial motion control, taking into account the mutual 
influence of control channels of the MR’s speed and angle that confirms the high 
efficiency of the proposed approach. 

Copyright © Research Institute for Intelligent Computer Systems, 2019.  
All rights reserved. 

 
 

1. INTRODUCTION 

Nowadays, there is a high level of automation of 
all involved technological processes and technical 
nodes at any stage of the material (substance) 
processing in the various sectors of industry, 
energetics and transportation [1, 2]. The use of 
highly effective automatic control systems of the 
technical plants is caused by the need of increasing 
their productivity, economic and operational 
indicators as well as the level of quality of the 
technological processes in general [3, 4].  

One of the most important challenges of 
automation of different technological processes and 
technical plants is the implementation of proper 
control of their main variables in order to stabilize 
the optimal operating modes under conditions of 
various types of disturbing influences [5]. Usually, 
the majority of technical plants and units, found 
today in the modern industry and transport areas, are 
complex non-stationary and/or nonlinear control 

objects, the operating conditions of which may 
change in rather wide limits [6-8]. Practice shows 
that automatic control of such plants based on 
conventional control principles in many cases does 
not allow achieving enough high quality indicators 
of control [9]. Also, the complexity of the given 
above problem additionally increases due to the fact 
that a sufficiently large number of industrial and 
transport plants are multicoordinate interrelated 
plants [10, 11]. Internal combustion engines and 
hydraulic drives, chemical reactors, industrial and 
mobile robots, unmanned underwater and aerial 
vehicles, machines of metallurgical industry as well 
as other dynamic plants in which two or more 
coordinates are simultaneously controlled are the 
examples of such plants [2, 7, 12-14]. Thus, to solve 
this problem and improve the quality of indicators 
and total effectiveness of MIPs control systems it is 
expedient to apply approaches and means of 
advanced control theory based on artificial 
intelligence and soft computing, in particular, neural 
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networks, fuzzy systems and bioinspired algorithms 
[15-17]. 

The issues of development and application of 
intelligent neural, fuzzy and neuro-fuzzy control 
systems of various complex plants are widely 
covered in scientific literature [18-21]. Analysis of 
the current research in this area shows, that neural 
controllers are most often used in automation 
systems of complex nonlinear multidimensional 
plants operating under conditions of uncertain 
disturbances, and for which there is no sufficient 
manual control experience gained by their operators 
[22-24]. This is confirmed by many examples of 
their successful application presented in a number of 
works, in particular, in control systems of different 
types of industrial and mobile robots [25, 26], DC 
and synchronous motors [27, 28], power and heating 
plants [29-31], ships [32] and others [33, 34]. 

The neural controllers’ performance in the 
control systems of the complex plants is directly 
dependent on the effectiveness of the training 
methods used [15, 17]. Contemporary studies show 
that evolutionary bioinspired approaches and 
algorithms have proven themselves to be quite 
promising at training, synthesis and optimization of 
neural networks and other intelligent systems [17, 
35, 36]. An approach to neural networks training by 
means of various evolutionary methods, in 
particular, genetic algorithms (GA) is called 
neuroevolution [37-39] and has the following 
advantages over conventional methods of training: 
(a) does not require training samples in the form of 
input-output pairs; (b) allows finding the global 
optimum for solving a problem, not getting stuck in 
local minima; (c) does not impose any restrictions 
on the fitness functions [40-42].  

A number of studies are currently underway to 
develop automation systems for different types of 
industrial plants based on a neuroevolutionary 
approach, the results of which are presented in 
publications [43-46]. In particular, the development 
of neural network controller for a fuel cell turbine 
hybrid energy system via multi-objective 
neuroevolution and the Pareto concavity elimination 
transformation is presented in [43]. The example of 
the efficient usage of neuroevolutionary algorithms 
for training the optimal impedance controller for 
robotic manipulator is shown in [44]. In turn, paper 
[45] presents the neuroevolutionary approach to 
solve the problem of stochastic inventory control in 
multi-echelon systems. Also, the deep 
neuroevolutionary control approach is proposed and 
applied to the autonomous vehicle driving control 
system in the paper [46].  

As regards designing functional structures, 
control devices, mathematical models and synthesis 

methods of control systems for complex 
multicoordinate interrelated plants on the basis of 
neuroevolutionary techniques, this problem remains 
unresolved and is the subject of research by 
scientists around the world. 

Therefore, the aim of this work is development 
and research of the neuroevolution based approach 
to design of automatic control systems for complex 
multicoordinate interrelated plants. 

 

2. CONTROL OF MULTICOORDINATE 
INTERRELATED PLANTS 

At designing of automatic control systems, it is 
often necessary to solve the problem of controlling 
of complex multi-input multi-output (MIMO) plants, 
characterized by many controlled quantities at the 
output [47]. In this case, a multi-channel control 
system should be created. The complexity of solving 
this problem largely depends on the features of a 
MIMO plant [10, 47]. 

At studying a MIMO plant, two cases are 
possible: (a) the output variables of the plant are not 
interrelated and a change in one value does not 
affect the others; (b) output variables are interrelated 
and a change in one of them leads to a change in the 
others [11]. 

In the first case, each control variable of the plant 
depends on only one control action and does not 
depend (or weakly depends) on the other control 
actions. For such systems, secondary connections 
can be neglected and the ACS is considered as one 
consisting of separate subsystems. Own regulator of 
a certain type is used to control each output variable 
of the plant. In this case, the control circuit of each 
output quantity is completely autonomous and can 
be considered as an independent ACS in the study. 
The control system is a multichannel ACS with 
independent control channels in this case. 

The plant control variables substantially depend 
on different control actions in the second case. Now, 
the relations between the controlled quantities 
cannot be neglected, and the plant is considered to 
be multicoordinate and interrelated. 

The functional structure of the ACS of the 
multicoordinate interrelated plant is presented in 
Fig. 1, where the following notations are accepted: 

YSi,  1,2,...,i m are the set values of the controlled 

variables of the multicoordinate interrelated plant; 

YRi,  1,2,...,i m are the real values of the 

controlled variables of the MIP; εi,  1,2,...,i m are 

the control errors of the MIP coordinates; Ci, 

 1,2,...,i m are separate controllers of the MIP 

coordinates; uCi,  1,2,...,i m  are the output signals 
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of the MIP controllers; m is a total amount of the 
MIP controlled variables; FD is a vector of 
disturbances acting on the plant. Sensors and other 
peripheral control aids are not shown in this Figure. 

The analysis of multicoordinate interrelated 
systems is rather difficult because of the complexity 
of the expressions, since the plant, in this case, is 
described by many transfer functions that take into 
account all the connections between  m controlled 

quantities, control actions uCi,  1,2,...,i m  and 

disturbances FD [46]. 

 

Figure 1 – Functional structure of the ACS of the 
multicoordinate interrelated plant 

Multicoordinate interrelated systems tend to give 
the property of autonomy in practice [10]. The 
autonomous control is such a control, in which a 
change in any i-th regulated value does not change 
the other. Systems can be autonomous with respect 
to input or disturbing actions. The autonomy of the 
ACS can be achieved by implementation of 
specialized corrective feedbacks [47]. In this case, 

the ACS controllers Ci,  1,2,...,i m  should be 

developed with additional connections between 
control channels to compensate their mutual 
influence. It is necessary to take into account the 
nature of the mutual influence of the controlled 
variables at designing the given controllers, and this 
is possible only if there is a deterministic description 
of this influence [11]. 

Mathematical models of the mutual influence of 
their controlled variables are not available or too 
complicated for a sufficiently large number of 
technical plants. Herewith, the controllers of their 
ACSs are developed separately for each variable 
(Fig. 1) on the basis of traditional methods, and the 
mutual influence of the controlled coordinates is 
considered to be disturbances and this does not 
allow obtaining sufficiently high quality indicators 
[47]. 

Thus, to increase the quality indicators and 
efficiency of the MIPs control systems it is advisable 
to use the proposed by the authors approach to ACSs 
development based on neuroevolution. 

3. NEUROEVOLUTION BASED 
APPROACH TO DESIGN OF CONTROL 

SYSTEMS FOR COMPLEX MIP 

The approach proposed by the authors is based 
on building the control system for the MIP on the 
basis of the single complex neural controller with 
multiple inputs and outputs. The main idea is that 
the complex multilayer neural network of the 
controller when properly trained takes into account 
the mutual influence of all variables of the MIP in an 
optimal way and allows implementing 
interconnected control with high quality indicators. 

Thus, neuroevolution based approach to design of 
control systems for complex MIPs, proposed by the 
authors, consists of the following steps. 

Step 1. Building of the ACS general structure on 
the basis of the single complex neural controller. At 
this stage, the structure of the control system is built, 
which is shown in Fig. 2. The given ACS has the 
complex NC, the number of outputs of which is 
equal to the number of controlled variables m. 
Wherein, the number of NC inputs l is chosen so that 
l ≥ m, since the controller inputs can be not only 

error signals εi,  1,2,..., ,i m  but also their 

derivatives of various orders and integrals 

 , ,...,i i idt    . In turn, the complex NC in 

addition to the multilayer neural network includes 
units of preliminary calculation of derivatives of 
various orders and integrals from the input signals. 

Also, parts of the given ACS structure are m 
reference models (RM) of the control processes of 
MIP variables and comparing devices, which 
calculate the discrepancy Ei between the RMs output 
signals YRMi and the real outputs of the plant YRi, 

 1,2,...,i m . In turn, the discrepancy Ei, 

 1,2,...,i m  is used for the calculation of the total 

goal function value JΣ of the control system by 
means of the goal function calculation unit (GFCU). 

Training of the complex NC of the control 
system in order to find the optimal value of the 
vector XNC of structural features and parameters of 
the multilayer neural network is implemented by the 
evolutionary based training mechanism (EBTM) 
using the current value of the total goal function JΣ. 
In turn, EBTM applies sequential growth of layers 
and neurons to determine the optimal structure of the 
NC as well as genetic algorithm to find its optimal 
parameters (connections weights). 

Step 2. Selection of structures and parameters of 
the reference models of the control processes of MIP 
variables. The structures and parameters of the 
reference models are selected at this stage depending 
on the desired transients of the MIP variables. For a 
sufficiently large number of controlled plants, the 
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desired transient should be aperiodic in nature with a 
minimum duration [2, 4]. Thus, the reference models 
for the MIP variables can be defined by the transfer 
functions WRMi (s) of the following form 

 

 
 
   

 RM

RM ν
S RM

s 1
s , 1,..., ,

s s 1 i

i

i

i i

Y
W i m

Y T
  


   (1) 

where TRMi and νi are the time constant and order of 
the transfer function of the i-th RM. 

 

Figure 2 – General structure of the ACS of the MIP on the basis of the single complex neural controller 

 

Step 3. Selection of structure, parameters and 
optimal value of the total goal function of the MIP 
control system. The structure, parameters and the 
optimal value of the total goal function JΣ of the MIP 
control system are selected at this stage. Wherein, 
the problem of synthesis of the structure and 
parameters of the neural network controller is a 
problem of multi-criteria optimization, in which the 
optimum of a set of goal functions is searched [17, 
35]. In turn, the total goal function can be calculated 
differently in various problems of multi-criteria 
optimization. In this case, it is advisable to calculate 
the total goal function JΣ based on the method of 
aggregation functions [17] in the following way 

 

 
1

, 1,..., ,
m

i i
i

J k J i m


     (2) 

 
where Ji is the goal function of the i-th controlled 
variable of the MIP; ki is the coefficient, that 

normalizes the value of the i-th goal function Ji and 
determines the importance of control quality of the i-
th controlled variable. For example, the mean 
integral quadratic error can be selected as the goal 
function of the i-th controlled variable, then the total 
goal function of the ACS has the form 
 

 
max

1 max 0

, 1,..., ,
tm

i
i

i

k
J E dt i m

t




         (3) 

 
where tmax is the total time of the MIP transient. 

In turn, the optimal value of the total goal 
function JΣopt is selected considering features of 
particular plant. 

Step 4. Selection of initial structure and 
constraints of the multilayer neural network of the 
MIP control system. The initial structure and 
constraints of the multilayer neural network of the 
NC are selected at this stage. Since, the 
chromosomes size in the given neuroevolutionary 
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approach directly depends on the number of 
connections weights and, accordingly, on the 
number of network layers and neurons in each layer, 
it is advisable to choose the most simple initial 
architecture of the neural network to reduce the 
computational costs during the GA search at Step 5 
and then, if necessary, gradually increase the number 
of neurons and layers at Step 7 and Step 8. 
Therefore, initially, three layers in the network 
should be set: input, one hidden layer and output. 
The number of neurons in the input and output 
layers are set equal to the number of inputs and 
outputs of the NC in accordance with its structure 
and the structure of the MIP control system. In turn, 
the number of neurons of the hidden layer can be set 
equal to the number of NC outputs. Also, the 
maximum possible number of hidden layers and 
neurons in a one hidden layer as well as 
interneuronal connections and type of activation 
functions are selected at this step. In turn, the 
constraints on the maximum possible number of 
hidden layers and neurons in a one hidden layer are 
selected in such a way that the synthesis process of 
the synaptic weights using GA with the 
corresponding maximum chromosomes size has 
acceptable computational and time costs.  

Step 5. Synthesis of synaptic weights of the 
neural network for the selected architecture by 
means of GA. The search for optimal parameters of 
NC weights is carried out using genetic algorithm 
according to the following steps.  

Step 5.1. Encoding of the NC network weights 
into the chromosome. The chromosome consists of 
genes, each of which is a NC network weight. 
Binary or real numbers can be used to represent 
genes [35]. For example, the synapse weights 
between the first input neuron and the first hidden 
layer neuron is encoded as w11, between the second 
input and the third hidden neuron ‒ w23. In this case, 
all the synaptic weights between the input and the 
hidden layers become a vector W1, between the 
hidden and the output layers ‒ vector W2. 

Step 5.2. Selection of genetic operators. 
The work of the GA is managed by three genetic 

operators: selection, crossover and mutation [17]. 
There are various modifications of these operators, 
so the choice of a particular variant affects the speed 
and quality of the solution. At this stage the 
probability of crossover PC and the probability of 
mutation PM are specified. 

Step 5.3. Creation of the initial population of 
chromosomes. The initial population of Z 
chromosomes is created containing information on Z 
different variants (finite set of admissible solutions 
to a problem) of the values of the weigh coefficients 
for the given structure of NC network at this stage. 

In turn, the initial population P0 is described by the 
expression (4) 

 

 0 1 2, ,..., ,..., ,j ZP H H H H       (4) 

 
where Hj is the population’s j-th chromosome; Z is a 
size of population. 

It is advisable to randomly set the values of the 
chromosomes genes in this case.  

Step 5.4. Evaluation of the chromosomes of the 
current population. The chromosomes evaluation is 
carried out by the following steps. 

Step 5.4.1. Decoding of chromosomes. At this 
stage decoding of each chromosome of the 
population into a set of weight coefficients of the 
NC network is implemented.  

Step 5.4.2. Building of neural networks of the 
NC. Building of NC networks that meet the 
estimated chromosomes is implemented at this stage. 

Step 5.4.3. Calculation of the total goal (fitness) 
function of the control system with NC. At this stage 
simulation of the control system of the MIP with 
developed NC is carried out and the total fitness 
function JΣ value is calculated for each j-th 
chromosome of the population (j = 1, .., Z). Wherein, 
the simulation of the ACS is carried out in all 
possible operating modes of the MIP (at different 
input signals and disturbances) and the total fitness 
function JΣ is calculated on the basis of equation (2). 

Step 5.5. Checking of the search expiration 
criteria. The search can expire when the following 
conditions occur. 

Condition 1. Achievement of the optimal value of 
the goal function JΣopt of the ACS at the synthesized 
NC. If the fitness function value JΣ of some 
chromosomes reaches JΣopt in the process of GA 
functioning, then the criterion is considered 
achieved. 

Condition 2. Exceeding the maximum allowed 
number of iterations nmax. The maximum number of 
iterations is set previously, before starting of the 
genetic search.  

Condition 3. Degeneration of the population. 
Previously, before starting of the GA operating, the 
number of iterations np and the threshold of the 
improvement coefficient of the fitness function 
values of the best chromosome ρp are set. Starting 
from the iteration np, at each subsequent iteration 
(np+1), the improvement coefficient ρ is calculated 
and compared with the threshold value ρp. In turn, 
the coefficient of improvement ρ is calculated as 

 

   

 

1

1

ρ ,
best n best n

best n

J J

J

  

 


       (5) 
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where  best n
J


 is the best value of the fitness 

function JΣ at the iteration n;  1best n
J
 

 is the best 

value of the fitness function JΣ at the iteration n–1. 
If the value ρ is less than ρp, then the stopping 

criterion is considered reached. 
The transition to Step 5.10 is carried out in the 

case of occurrence of one of the given above 
stopping conditions. 

Step 5.6. Selection of chromosomes for 
crossover. At this stage the population chromosomes 
are selected for crossover to generate new solutions 
on the basis of the values of the fitness function JΣ. 
In this case, it is advisable to use the proportional 
selection [17], which is implemented by the 
following steps. 

Step 5.6.1. Determination of the average value of 
the fitness function of the population. Determination 
of the average value of the fitness function JΣM of 
the population as the average of the arithmetic 
values of the fitness functions of all individuals is 
implemented according to equation (6) 

 

M
1

1 Z

j
j

J J
Z

 


  .      (6) 

 
Step 5.6.2. Calculation of the selection ratio. At 

this stage the value of the selection ratio PS(j) for 
each individual is calculated as follows 

 

 S

M

jJ
P j

J





 .      (7) 

 
Step 5.6.3. Forming an array of chromosomes for 

crossover. The array of individuals admitted to 
crossover is formed at this step depending on the 
PS(j) value (if PS(j) > 1, then, the individual is 
considered well adapted and allowed to crossover). 

Step 5.7. Crossover of the chromosomes. At this 
stage the crossover operators for the chromosomes 
selected in the previous step are applied. In this case, 
random selection of parent couples is applied [35]. 

Step 5.7.1. Numbering the chromosomes. The 
numbering of all the representatives of the current 
population is implemented in an arbitrary manner at 
this stage.  

Step 5.7.2. Choosing the first parent. At this 
stage the number on the interval [0; 1] is randomly 
chosen for each chromosome, starting from the first 
one. The first parent in the pair will be the first 
chromosome, for which the given random number is 
not less than probability of crossover PC. 

Step 5.7.3. Choosing the second parent. The 
browsing of the population is continued, starting 
from the decision following after the first parent 

(selected in previous step), until the randomly 
chosen number again is not less than PC. The 
chromosome for which such a condition is fulfilled 
will be the second parent. Step 5.7.3 is continued 
until the required number of pairs of parents is 
selected. 

Step 5.7.4. Crossover of the selected parent 
chromosomes. At this stage the one-point cross-
operator is applied for each parent pair. In turn, the 
crossing point in the crossover operation is chosen 
randomly. 

Step 5.8. Mutation of chromosomes. The 
mutation operators are applied for chromosomes, 
selected at Step 5.6 according to the probability of 
mutation PM (selected at Step 5.2).  

Step 5.8.1. Copying the parent chromosomes into 
a chromosome-heir. At this stage the parent 
chromosomes, admitted to mutations, are copied into 
the chromosomes-heirs. 

Step 5.8.2. Choosing the mutant gene. The 
mutant gene of each chromosome, admitted to 
mutations, is chosen randomly. 

Step 5.8.3. Choosing a new gene value. Choosing 
a new gene value that is not equal to the current one 
is implemented in a given range of permissible gene 
values for each mutating gene. 

Step 5.9. Forming a new generation. A new 
generation of elite chromosomes and chromosomes-
heirs obtained by applying crossover and mutation 
are formed at this stage. Then the transition to Step 
5.4 is carried out. 

Step 5.10. Stopping the operation of genetic 
algorithm. 

Step 6. Checking the criteria of the genetic 
search stopping. At this stage the criteria of genetic 
search stopping is checked and if the Condition 1 is 
satisfied, the transition to Step 9 is implemented. If 
Conditions 2 or 3 are satisfied – the transition to the 
next step is carried out.  

Step 7. Addition of the one neuron to the last 
hidden layer. One neuron is added to the last hidden 
layer at this stage. If the maximum number of 
neurons in this layer is reached, then transition to the 
next step is carried out. Otherwise the transition to 
Step 5 is implemented. 

Step 8. Addition of a new hidden layer. A new 
hidden layer is added, consisting of one neuron 
before the outputs layer. Provided the maximum 
number of hidden layers is reached, the transition to 
the Step 4 is carried out. Also, the return to Steps 3, 
2 or 1 can be done in order to change types or 
parameters of fitness function and reference models, 
as well as inputs of the control system NC. Provided 
the maximum number of hidden layers is not 
reached, the transition to the Step 5 is implemented 
and genetic search starts again.   
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Step 9. Implementation and the use of the 
developed ACS based of NC to control of complex 
multicoordinate interrelated plant. 

To study the effectiveness of the given above 
neuroevolution based approach it is advisable to 
conduct the design process of the automatic control 
system for the spatial motion of multipurpose 
caterpillar mobile robot able to move on inclined 
and vertical ferromagnetic surfaces. 

 
4. DESIGN OF THE SPATIAL MOTION 

ACS FOR THE MULTIPURPOSE 
CATERPILLAR MOBILE ROBOT  

The multipurpose caterpillar mobile robots able 
to move on inclined and vertical ferromagnetic 
surfaces are very effective instruments for moving 
different working tools along given trajectories and 
automation of such technological operations as 
cleaning, rust removal, painting, welding, etc. in 
ship repair, shipbuilding, agriculture, gas and oil 
refining and in other branches of industry, where it 
is necessary [48-50]. The given MRs allow us to 
replace the monotonous human labor as well as 
improve the performance of technological processes 
and decrease the risks to workers’ health and life in 
the life-threatening conditions [51]. 

However, to implement the given above 
operations the multipurpose caterpillar MRs have to 
be able to move along pre-set trajectories and 
operate under uncertainty of the working surface 
caused by their technological features, presence of 
obstacles, structural damage, etc. [49, 50]. Thus, 
automatic control of the spatial motion under the 
action of various disturbances is one of the most 
important and complicated automation tasks of MRs 
of such type [51]. This task involves the 
simultaneous control of two interrelated MR’s 
variables: linear speed and steering angle. The given 
interrelation of variables as well as a number of 
features of the robot as a non-linear multicoordinate 
interrelated plant don’t allow achieving high control 
efficiency at using separate conventional controllers 
in the MR’s two-channel ACS [51]. Thus, it is 
expedient to use the proposed by the authors 
neuroevolution based approach to design the 
automatic control system for the spatial motion of 
the multipurpose mobile caterpillar robot. 

The development of the spatial motion ACS is 
conducted for the caterpillar robot with the 
following main parameters: MR’s loaded weight of 
150 kg, length of 1 m, width of 0.8 m, driving wheel 
radius of 0.15 m, linear speed of movement of 0.3 
m/s, two drive motors 2PB132MH and gear ratio of 
105. The mathematical model of the MR consists of 
the following equations 
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where FTO and F are the values of the specific forces 
of technological operation and the clamping 
magnets; G is the total weight of the robot and 
process equipment; γ is the surface inclination angle; 
f is the coefficient of rolling friction; ξ is the 
coefficient of adhesion; mMR is the robot mass; λ is a 

combined mass ratio, λ = 1,15 + 0,001
2
Rk ; kR is the 

gear ratio; c is the robot acceleration; VC1, VC2 are 
the current linear velocity of lagging and running 
caterpillars; RT is the robot turning radius; VMR, φMR 
are the current linear speed and course of robot, ωMR 
is the rotation speed of the MR, ωMR = dφMR/dt; B is 
the distance between the centers of caterpillars; ωW1, 
ωW2 – angular velocity of lagging and running 
wheels; RW is the radius of the driving wheel; a and 
b are the coefficients, that take into account direction 
of rotation of the robot, a = 1, b = 1 – for a lagging 
caterpillar; a = 2, b = ‒ 1 – for a running caterpillar; 
МEMa are the electromagnetic torques of drive 
motors; ηM, ηMR are the efficiency of the motor and 
MR; DM is the moment of inertia of the motor 
anchor; DΣW is the total moment of inertia of two 
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wheels and caterpillar; L, hC are the length of robot 
and height of center of gravity; xO, x1 are the 
distances from the transverse axis of the robot to the 
turning centers of the caterpillars and to the point of 
fixing the technological equipment; β is the angle of 
deviation of the force FTO from the longitudinal axis 
of the robot; μT is the cornering resistance, which 
depends on the turning radius. 

At the Step 1 of the proposed approach the 
functional structure of the ACS for the spatial 
motion of multipurpose caterpillar mobile robot is 
built on the basis of the single complex neural 
controller, which is shown in Fig. 3. 

 

Figure 3 – Functional structure of the ACS of the MR 
spatial motion  

In Fig. 3 the following notations are accepted: 
VMRS and φMRS are the set values of the MR speed 
and course angle; VMRD and φMRD are the desired 
values of the MR speed and angle, obtained at the 
outputs of the corresponding reference models RMV 
and RMφ; εV and εφ are the control errors of the MR 
variables; EV and Eφ are the discrepancies between 
the RMs output signals and the real outputs of the 
mobile robot. The given ACS has the complex NC 

with 5 inputs: , , , ,V V V dt        and 2 outputs: u1 

and u2, that are, in turn, the control signals of the 
robots corresponding caterpillars.  

At Step 2 two reference models for the MR 
variables VMR and φMR are selected, that are defined 
by the following transfer functions 
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where TRMV and TRMφ are the time constants of the 
RM transfer functions (TRMV = 0.35; TRMφ = 0.21).  

At Step 3 the total goal function JΣ of the MR 
control system is specified in the form 

 
max max

φ

φ φ

max max0 0

,
t t

V
V V

kk
J J J E dt E dt

t t
        (17) 

 
where kV and kφ are the coefficients, that normalize 
the values of the goal functions JV and Jφ of the 
circuits of speed and angle control respectively (kV = 
22; kφ = 1).  

In turn, the optimal value of the total goal 
function JΣopt is selected to be equal to 160. 

At Step 4 the initial structure and constraints of 
the multilayer neural network of the mobile robot 
NC are selected. In turn, the initial structure is 
chosen as follows: five input neurons, two neurons 
in the single hidden layer and two output neurons (5-
2-2). In this case, the GA chromosome of minimal 
size consists of 14 genes. As for the constraints, the 
maximum possible number of hidden layers is 5 and 
the maximum possible number of neurons in the one 
hidden layer is 4. Thus, the maximum chromosome 
size is 92 genes allowing us to implement the 
synthesis process of the network synaptic weights 
with acceptable computational and time costs. Also, 
linear activation functions are selected for two 
output neurons and hyperbolic tangent sigmoid 
activation functions are selected for other neurons at 
this step. 

Further training of the complex NC of the MR 
spatial motion ACS in order to find the optimal 
structure and parameters of the multilayer neural 
network is implemented by the evolutionary based 
training mechanism at the next remaining steps of 
the approach. In turn, the sequential growth of layers 
and neurons is conducted according to Steps 7 and 8 
as well as genetic search of the optimal connections 
weights is carried out according to Step 5. The 
number of chromosomes Z in the population is 
selected equal to 150. The maximum allowed 
number of iterations nmax = 100. 

As a result of the conducted training the optimal 
structure of the NC network is found as follows: five 
input neurons, the first and the second hidden layers 
consist of four and three neurons, as well as two 
output neurons (5-4-3-2). For the given structure 
each GA chromosome consists of 38 genes and the 
total goal (fitness) function value JΣ = 159.33 is 
achieved at the 87-th iteration. The characters of 
change of the total goal function (17) value in the 
process of neural controller training for the obtained 
structure are presented in Fig. 4. 
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Figure 4 – The nature of the best goal function value 
change in the process of NC training 

The simulation of the designed spatial motion 
ACS with NC of the caterpillar robot on the basis of 
the neuroevolutionary approach transients is 
conducted to study its efficiency. The comparison of 
the obtained simulation results is performed for two 
control coordinates VМR and φМR at the output of 
MR’s model (Fig. 3) with desired VМRD and φМRD 
values formed at the output of their RMs as well as 
with traditional separate speed PID-controller and 
angle PD-controller in interrelated two-channels 
structure of MR’s spatial motion ACS. In turn, the 
conventional speed PID-controller and angle PD-
controller are tuned via parametric optimization of 
basic control quality indicators with the help of 
gradient method. The obtained coefficients values 
are as follows: kPV = 6.5; kIV = 422.4; kDV = 0.23 – 
for the speed PID-controller and kPφ = 48.5; kDφ = 
5.2 – for the angle PD-controller. In this case, the 
disturbance is simulated as the constantly acting on 
the mobile robot maximum permissible load force 
from the technological operation FTO = 1000 N. 

The graphs of the ACS transients for step up 
changes of set points VMRS = 0.3 m/s and φMRS = π/3 
rad at the surface inclination angle γ = 60º are 
presented in Fig. 5 and 6 respectively. 

 

 

Figure 5 – ACS step up transients of MR’s speed: 1 – 
with NC of spatial movement; 2 – speed RM; 3 – with 

conventional PID-controller 

 

Figure 6 – ACS step up transients of MR’s angle: 1 – 
with NC of spatial movement; 2 – angle RM; 3 – with 

conventional PD-controller 

The quality indicators comparative analysis of 
the spatial motion ACS of the MR with the 
developed NC and optimally tuned conventional 
controllers is presented in Table 1, where tt is the 
transient time; Δ is the static error.  

Table 1. Comparative analysis of quality indicators of 
the ACS of the MR spatial motion (step up transients).  

Model type 
ACS quality indicators  

tt, s Δ,% JV  Jφ 

RMV 2,11 0 0 - 

Speed with PID-
controller 

4,6 1 22,7 - 

Speed with NC 2,09 0,7 0,8 - 

RMφ 0,89 0 - 0 

Angle with PD-
controller 

2,36 4,8 - 292,4 

Angle with NC 1,91 0,6 - 138,1 

 
As it can be seen in Table 1, Fig. 5 and Fig. 6 the 

developed ACS of the MR spatial motion on the 
basis of the proposed neuroevolutionary approach 
has considerably higher quality indicators for speed 
and turning angle control compared with the use of 
conventional ACS with separate controllers of the 
given variables. In particular, the use of the 
multicoordinate interrelated ACS with the single 
complex NC allows us to reduce the transients time 
of the speed and angle control by 55% and 19% 
respectively, to eliminate unwanted overshoot of 
27% at speed control and significantly reduce (8 
times) the static error at angle control. Wherein, the 
static error of the MR’s speed control is less than 1% 
that isn’t critical while performing various 
technological operations.  

The graphs of the ACS transients for step down 
changes of set points VMRS = 0.1 m/s and φMRS = 
π/12 rad (from 0.3 m/s and φMRS = π/3 rad 
respectively) at the same simulation conditions are 
presented in Fig. 7 and 8.  
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Figure 7 – ACS step down transients of MR’s speed:  
1 – with NC of spatial movement; 2 – speed RM;  

3 – with conventional PID-controller 

 

Figure 8 – ACS step down transients of MR’s angle:  
1 – with NC of spatial movement; 2 – angle RM;  

3 – with conventional PD-controller 

 
As well, the quality indicators comparative 

analysis of these transients is presented in Table 2. 

Table 2. Comparative analysis of quality indicators of  
the ACS of the MR spatial motion (step down 

transients).  

Model type 
ACS quality indicators  

tt, s Δ,% JV  Jφ 

RMV 2,55 0 0 - 

Speed with PID-
controller 

4,9 0 2,36 - 

Speed with NC 2,4 1 0,13 - 

RMφ 1,06 0 - 0 

Angle with PD-
controller 

2,07 0 - 12,7 

Angle with NC 0,95 2,9 - 9,96 

 
As it can be seen in Table 2, Fig. 7 and Fig. 8 the 

developed ACS of the MR spatial motion on the 
basis of the proposed neuroevolutionary approach 
also has higher quality indicators for speed and 
turning angle control compared with the use of 
conventional ACS with separate controllers of the 

given variables. In particular, the use of the 
multicoordinate interrelated ACS with the single 
complex NC allows us to reduce the transients time 
of the speed and angle control by 51% and 54% 
respectively for step down transients, wherein the 
static errors at speed (1%) and angle (2.9%) control 
are not critical while performing various operations. 
Besides, JV and Jφ are less for developed system in 
both cases of transients (step up and step down). 

Thus, the synthesized ACS of the MR spatial 
motion with NC shows higher quality of control, 
better takes into account the mutual influence of 
control channels of the angle and speed of mobile 
robot than separate conventional regulators, and, 
accordingly, allows increasing performance and 
quality of the specified technological operations.  

Therefore, the above studies confirm the high 
efficiency of the proposed neuroevolution based 
approach to design of control systems for complex 
multicoordinate interrelated plants. The application 
of the developed approach at designing ACSs for 
complex MIPs gives the opportunity to take into 
account the mutual influence of their control 
variables and, as a result, significantly improve the 
quality indicators of control and total effectiveness 
providing optimal operating modes. 

 

5. CONCLUSIONS 

Neuroevolution based approach to design of 
automatic control systems for complex 
multicoordinate interrelated plants, developed by the 
authors, is presented in this paper.  

The proposed approach allows us to build the 
structure of the control system for the 
multicoordinate interrelated plant on the basis of the 
single complex neural controller with multiple 
inputs and outputs as well as to conduct the proper 
training of its multilayer neural network by means of 
the evolutionary based training mechanism, taking 
into account the mutual influence of all variables of 
the MIP in an optimal way. In particular, the given 
approach applies sequential growth of layers and 
neurons to determine the optimal structure of the NC 
as well as genetic algorithm to find the optimal 
values of its connections weights. All this gives the 
opportunity to implement interconnected control of 
the MIP variables with rather high quality indicators 
as well as improve its total effectiveness in the 
optimal structure of the developed system NC.  

For studying the effectiveness of the presented 
approach the design process of the automatic control 
system for the spatial motion of multipurpose 
caterpillar mobile robot able to move on inclined 
and vertical ferromagnetic surfaces is carried out in 
this work. The developed ACS has a single neural 
controller with optimal structure and allows us to 
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achieve high quality indicators of spatial motion 
control, taking into account the mutual influence of 
control channels of the MR’s speed and angle, and, 
consequently, increase performance and quality of 
the specified technological operations that generally 
confirms the high efficiency of the proposed 
neuroevolutionary approach. 

Further research should be related towards the 
practical application of the proposed 
neuroevolutionary based approach at the 
development of the software and hardware of the 
designed ACS with NC for the experimental model 
of the multipurpose caterpillar mobile robot able to 
move on inclined and vertical ferromagnetic 
surfaces. 
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