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Abstract: This paper presents a new method for constructing a third degree 
parametric spline curve of C1 continuity. Like the Bèzier curve, the proposed 
curve is constructed and operated by control points. The peculiarity of the 
proposed algorithm is the assignment of some unknown values of the spline in 
the control points abscissas, which are based on the conditions of the first 
derivative continuity of the curve at these points. The position of the touch 
points, as well as the control points, can be set interactively. Changing of these 
points positions leads to a change in the curve shape. This allows the user to 
flexibly adjust the shape of the curve. Systems of algebraic equations with 
tridiagonal matrix for calculating the coefficients of a spline curve are 
constructed. Conditions for the existence and uniqueness of such a curve are 
presented. Examples of the use of the proposed curve, in particular, for 
monotone data sets, approximation the ellipse and constructing the letter "S" are 
given.  

Copyright © Research Institute for Intelligent Computer Systems, 2019.  
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1. INTRODUCTION  

Bèzier method is a powerful tool for constructing 
curves and surfaces with desired properties in the 
computer geometric design systems. The combination of 
Bèzier's curves with the technique of the spline 
constructing provided significant opportunities for the 
development of spline curves, which are actively used in 
computer-aided design systems and computer graphics 
packages [1, 2, 3]. The general feature of curves and 
surfaces called Bèzier curves is that they are defined, 
modified, and operated by control points [4]. Due to the 
interactive choice of these points’ spatial positions, the 
designer can customize and modify the curve shape to 
meet the requirements of a particular task. 

The combination of Bèzier curves with a 
procedure for building a spline yielded significant 
possibilities for the development of spline curves. A 
comparison between the Bèzier curve and methods 
for interpolation using the Hermitian splines is given 
in [5]. Several Hermite-type interpolation methods 
for rational cubic are presented in [6].  

The historical development and current state of 
Bernstein polynomial can be found in [7]. 

Manipulating control points makes it possible to 
customize the interpolation spline to the shape of the 
curve selected by a designer. The criteria for 

choosing the "best" spline to achieve a 2G  
continuity of the entire curve are studied in [8]. The 
structure of spline is introduced with additional 
parameters for retaining the universality and good 
approximating properties of splines in terms of 
engineering applications. 

Techniques for obtaining piecewise-quadratic 
polynomial curves with four control points for each 
segment of the curve and local parameters of the 
shape are presented in [9]. Introducing additional 
parameters to the basis is a convenient way to adjust 
the shape of the curves. Numerical and geometrical 
effects caused by a change in the shape parameters 
are investigated in [10]. 

The Bèzier curves are controlled by three 
additional parameters in [11]. Compared with 
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ordinary Bèzier curves, the adjustable Bèzier curves 
have two main advantages: flexible form and simple 
continuity condition. Moreover, the curves can reach 

kG  continuity. 
The way the shape of the curve changes locally 

depending on values for the parameters of the shape, 
which are included in the basis, can be found in [12]. 
An example of constructing and controlling a curve 
for computer-aided ship hull design is given in [13]. 

In order to represent conic curves, as well as 
certain transcendental curves, it is more appropriate 
to use trigonometric functions as the basis functions 
of the B-spline curve. In this case, the introduction 
of parameters to basis functions also provides 
additional possibilities to adjust the shape of the 
curve. A trigonometric basis, that contains 
parameters of the shape to represent an ellipse, are 
used in [14]. Building a new type of splines, which 
are called quadratic irregular algebraic, 
trigonometric B-splines with several shape 
parameters, and which make it possible to globally 
or locally adjust the shape of the curves, are reported 
in [15]. The dependence of geometrical properties of 
the proposed cubic trigonometric curves and the 
Bèzier surfaces on the shape parameters are studied 
in [16]. Cubic trigonometric basis functions of a 
spline with a local parameter of the shape are 
considered in [17]. Thus, the introduction of 
parameters makes it possible to build a class of 
functions among which one can choose the one that 
is most suitable for a given data set. The rational 
quadratic trigonometric Bèzier curve with two shape 
parameters is presented in [18]. In this paper a 
quadratic Bèzier curve was constructed, which has 

2G  and 2C  continuity. 
However, it should be noted, that the method of 

Bèzier curves may not be able to satisfy all the 
requirements that may arise during the design 
process. In particular, the positions of control points 
can be influenced on the smoothness of neighboring 
polynomials docking, of which the curve is formed. 
Therefore, the construction of curves smoothness 
which does not depend on the location of control 
points, is relevant. To obtain additional smoothness 
of the curves, an algorithm for constructing control 

points, the position of which ensures the 2C  
continuity for compound cubic Bèzier curves is 
proposed in [19]. 

The local configuration of the curve shape can be 
accomplished by introducing additional parameters 
into the basis. Although this enables to manage the 
curve shape, it is practically impossible to do this 
interactively. 

The approach which was proposed in [20] now 
we use for parametric curves. An algorithm for 
constructing a cubic spline curve is proposed and 

substantiated. Systems of algebraic equations with 
tridiagonal matrix for calculating the coefficients of 
polynomials are constructed. Conditions for the 
existence and uniqueness of such a curve are 
presented. The proposed curve has a third degree 

and retains the continuity of 1C  for any number of 
control points with an arbitrary position. The 
peculiarity of the proposed algorithm is the 
assignment of some unknown values of the spline in 
the control points abscissas, which are based on the 
first derivatives continuity conditions of the curve at 
these points. Research parabolic splines with 
additional knots are in [21]. 

The proposed algorithm for constructing of a 
spline curve and the resulting function have the 
following useful properties: 

─ the curve has a continuity of 1C  for any set of 
control points and their arbitrary location;  

─ the obtained curve allows to retain the monotony 
of the original data set; 

─ a strategy for selecting and manipulating control 
points is intuitively understood;  

─ manipulations with parameters that allow you to 
locally adjust the curve shape can be done 
interactively;  

─ the algorithm for curve constructing is well suited 
for implementation on a computer, since it 
requires ( )O N  arithmetic operations, where N  is 

the number of control points. 
The scientific contribution compared to a modern 

approach is the ability of the user to construct 
various curves for a given data set among which the 
best one is chosen for the problem being solved. 
This is achieved by combining the method of 
constructing a spline curve for a specially 
constructed set of interpolation points and 
controlling the resulting curve using control points. 

The method discussed in the publication is well 
suited for monotony data sets. Existing methods 
focus on constructing curves that interpolate source 
data. The shape of curves between the interpolation 
knots is difficult to control and may depend on the 
knots location. Some authors proposed various 
methods for approximating the derivatives at the 
interpolation knots to preserve the monotony of the 
original data. 

One of the widely used methods is the Akima’s 
method which was proposed in the research [22]. A 
method for determining the slopes locally at each 
given point is proposed in this research work. In [23] 
it was shown that the Akima’s method leads to a 
violation of monotony on some irregular data sets. In 
this research work, an iterative algorithm for 
calculating derivatives at the interpolation points 
was constructed to build a monotone interpolant, 
which guarantees the function monotonicity on the 
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interval for non-uniform data sets. In [24], the 
method of calculating the derivatives at the 
interpolation points as a weighted harmonic average 
was used to construct monotone interpolation 
methods. 

In contrast to these works, here it is proposed to 
calculate the derivatives at points located between 
the control points. As a result, the resulting curve 
does not always pass through control points. For 
turning a curve into an interpolation curve for all 
points, the manipulation of control points is used. 

The paper is organized as follows: In Section 2, a 
problem is formulated and a new method for 
constructing a spline parametric curve in the form of 
two Hermite polynomials of third degree is 
presented. Also, the conditions of existence and 
uniqueness of the resulting curve are given. Section 
3 shows a step-by-step algorithm for constructing a 
parametric spline curve. Section 4 provides 
examples of the practical use of the proposed 
method for different data sets. 

 

2. METHOD OF CURVE DESIGN 

In this section, the problem of parametric 
piecewise polynomial interpolation is considered. 
The systems of algebraic equations for determining 
the coefficients of polynomials are given. The 
conditions of existence and uniqueness of its 
solution are given. 

Let we have a sequence of control points 

1 1 2 2( , ),( , ),...,x y x y  ( , )N Nx y . Let's make a polygonal 

line, by combining each of the adjacent points of a 
sequence with the segments of a straight line and 
determine the length of each of these segments 

 

 2 2
1 1( ) ( ) , 2,i i i i ih x x y y i N      . (1) 

 

We also determine at what distance i  along the 

polygonal line there is each of the control points of 
our sequence 

 

 1
2

0, , 2,
i

i j
j

h i N 


   . (2) 

 

On each segment we define some points i  such 

as 
 

1 1 2 1... N N N           , 

1 , 2,i i i i N      . 
 

At points i , the built spline curve will touch the 

corresponding segment of the polygonal line. 
Let's denote  
 

 i i i    , 2,i N ,  (3) 

because 1i i ih     , then 1i i i ih     . 

We construct a spline curve, which is 
parametrically set by two splines of the third degree 

( )xS t and 1( ), [ , ]y NS t t   . For these curve points 

i  there are knots of the splines, while points i  are 

the multiple knots of interpolation. We construct 
cubic splines of the defect 2 in the interval 1[ , ]N  , 

that meet the following conditions 
 

 , ,( ) , ( )x i x i y i y iS f S f   , 2,i N  (4) 

1 1,
i i

yx i i i i

t i it

dSdS x x y y

dt h dt h 

 

 

 
  , 2,i N ,  
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
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 (5) 

 

According to [20] we denote through i  and 

i , 1,i N  the unknown values of functions ( )xS t  

and ( )yS t in the knots of the spline i . 

To identify the unknowns i , i 1,i N , two 

systems of algebraic equations are constructed. 
These systems are determined from the first 
derivatives continuity conditions of functions ( )xS t  

and ( )yS t at points it  , 2, 1i N  : 

 

 (1) (2)
1 1 ,( ) ,i i i i i i i x iA C C B         (6) 

 (1) (2)
1 1 ,( ) ,i i i i i i i y iA C C B         (7) 

 

where 
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 (11) 

 
To close the system of equations we add 

conditions 
 

 1 1, ,N Nx x      1 1, .N Ny y    (12) 

 

These systems of equations have three-diagonal 
matrices. It was shown in [20] that matrices of the 
equation systems (6), (7), (12) have a diagonal 

superiority under conditions 
1 2

3 3
i  , where 

i
i

ih


  . These conditions guarantee the existence 

and uniqueness of these systems solution, and hence 
the curve itself. 

The spline curve points at each of the intervals is 
determined using the Hermite interpolation 
polynomial [25] of the third degree 
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 (14) 

 

for 1[ , ], 2,i it i N   , where ,x yQ Q  are found from the following expressions: 
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  
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 1
1 ,2 2 2 2

21 1

( ) ( ) ( )
i i i i

y i i y i

i i i i i i i i i i i i

h y y
Q f

h h h h h h


 

     




 
    

  
. (16) 

 

3. ALGORITHM 

The method for constructing a spline parametric 
curve is presented in this section in the form of a 
step-by-step algorithm, which can easily be used to 
build a computer program. 

Step 1. Enter the arrays  ( , ), 1,i ix y i N  and 

 , 1, 1i i N   . 

Step 2. Calculate arrays  , 2,ih i N  by the 

formula (1),  , 1,i i N   by the formula (2), 

 , 2,i i N   by the formula (3). 

Step 3. Calculate arrays  , , 2,x if i N  and 

 , , 2,y if i N  by the formula (5). 

Step 4. Calculate the matrix elements of the 
equation systems to determine the spline 
coefficients: 

 , 2, 1iA i N   and  , 2, 1iB i N   by the for-

mula (8),  (1) , 2, 1iC i N   and  (2) , 2, 1iC i N   

by the formula (9),  , , 2, 1x i i N    by the 

formula (10),  , , 2, 1y i i N    by the formula 

(11). 

Step 5. Calculations of the arrays  , 1,i i N   

and  , 1,i i N   by solving simultaneous equations 

(6), (7), (12). 
Step 6. Calculation of values ( )xS t  and ( )yS t  

for 1[ , ], 2,i it i N    using the formulas (13)-(16). 

After constructing the curve, the user evaluates 
whether the curve form satisfies the requirements of 
a task. If necessary, the shape of the curve can be 
changed by correction of control points.  
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4. NUMERICAL EXAMPLES 

This section demonstrates the practical 
applicability of the method for interpolating 
monotone data sets. The possibilities of the method 
for describing various flat figures are shown. 

In all calculations, all = 1 / 2i  was put. The 

local behavior of the spline curve, depending on the 

i  parameter values, is considered in [20]. 

The systems of equations (6), (7), (12) are solved 
by an effective tridiagonal method, for which 8N  
operations are required [26]. 

Example 1. The results of applying the proposed 
method to the data from the research [22] are 
presented (see Table 1). This data (represented by 
dots in Figure 1) is used to test methods for 
constructing curves that retain monotonicity. The 
dashed line indicates the result of applying the 
proposed method to the data from Table 1. The 
resulting curve is not interpolation for all points. For 
turning the curve into an interpolation, manipulation 
with control points was performed. 

The resulting set of control points is shown in 
Table 2. The reuse of the algorithm gives a curve 
that is an interpolation for the original set of control 
points. Since the behavior of the curve between the 
knots is unknown, an important criterion is its visual 
perception. The appearance of curve 2 in Figure 1 
visually coincides with the best curve drawn by 
experts [22]. 
 

 

Figure 1 – Results of the spline curve calculation for 
Akima’s data 1 

 

Table 1. Akima’s data 1. 

i  0 1 2 3 4 5 6 7 8 9 10 

iF  10 10 10 10 10 10 10.5 15 50 60 85 

Table 2. Modified data. 

i  0 1 2 3 4 5 6.3 7.2 7.9 9.1 10 

iF  10 10 10 10 10 10 10.3 15 50 60 85 

 
Example 2. In the research [23] it was shown 

that on some non-uniform grids (Table 3) [22]  
Akima's method breaks the monotony of the curve. 
In Figure 2 the dots show the data from Table 3, the 
dashed line shows the result of applying the 
proposed method to this data. The constructed curve 
retains monotony, but is not interpolational for all 
the points. 

Table 3. Akima’s data 3. 

i  0 2 3 5 6 8 9 11 12 14 15 

iF  10 10 10 10 10 10 10.5 15 50 60 85 

 
The modified set of control points is presented in 

Table 4. The curve plotted for these points as control 
points, is an interpolation curve for the initial data 
(the solid line on the graph). The obtained curve is 
visually close to the intuitive idea of the function 
behavior. The necessary manipulations with the 
initial set of control points can be easily carried out 
interactively. 

Table 4. Modified data. 

i  0 2 3 5 6 8 9 11.35 11.7 14.2 15 

iF  10 10 10 10 10 10 10.5 15 50 60 85 

 

Figure 2 – Results of the spline curve calculation for 
Akima’s data 3 

Example 3. In this example, the sample data set 
from the research [24] was used (Table 5). The 
results of the algorithm are shown in Figure 3. To 
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obtain an interpolation curve, a modified set of 
points was used (Table 6). The dots indicate the 
initial control points, the dashed line is the curve 
corresponding to the data in Table 5, the solid line is 
the curve corresponding to the data in Table 6. In 
this example, the number of control points has been 
increased.  

Table 5. Data from the research [24]. 

i  0 1 2 3 3.25 5 6 7 8 9 10 

iF  10 9.5   9 8.5    3 2 1.78 1.56 1.34 1.12 0.9 

Table 6. Modified data. 

i  0 1 2 2.9 3 3.1 3.15 3.25 3.35 5 6 7 8 9 10 

iF  10 9.5 9 8.55 8.5 8.45 3.05 3 2.95 2 1.78 1.56 1.34 1.12 0.9 

 
Example 4. Let the sequence of control points 

, = 1,12i i  which is marked with numbers from 1 to 

12 in Figure 4. Lines connecting adjacent points are 
thin lines. The results of constructing a spline curve 
according to the proposed algorithm are shown by a 
thick line, the curve on the graph is plotted starting 
from the point lying in the middle of the segment 

1 2( , )   and ends at a point lying in the middle of the 

segment 1( , )N N  . These points are plotted on the 

graph by crosses. 
 

 

Figure 3 – Results of the spline curve calculation for 
data from [24] 

 

 

Figure 4 – Results of the spline curve calculation for  
an arbitrary sequence of control points. 

 

Example 5. There are many studies on the 
approach of conical sections, see, for example [27]. 
Here we demonstrate the possibility for the 
approximation of the ellipse using the proposed 
curve  

 

= 2cos , = sin , = 0,2x y    . 

 
The points of an ellipse are selected with a 

uniform step = / 6  . At these points, tangent 

ones are constructed. The points of tangents 
intersection are chosen as control points. To close 
the curve, control points 1 and 2 are repeated in 
sequence and have numbers 13, 14. The construction 
results are shown in Figure 2. The designations in 
Figure 5 are the same as in Figure 4. The closing 
point is indicated by a cross in Figure 5. At this 

point the spline curve also has the 1C  continuity. 
The example demonstrates a good opportunity of 
approaching an ellipse with the proposed curve. 

Example 6. The algorithm is used to construct a 
flat figure of complex shape. In [8] splines were 
used to construct the letter "S". In our example, the 
letter "S" is used, which is given by thirty control 
points (Figure 6). The result of the curve 
construction is shown in the Figure with a thick line. 
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Figure 5 – Results of a closed curve construction on an 
example of an ellipse 

 
5. CONCLUSIONS 

In the framework of the study, an algorithm 
constructing of the third degree parametric spline 

curve of 1C  continuity for any number of control 
points and their arbitrary position is proposed and 
substantiated. The originality of the proposed 
approach is that the segments of the straight lines 
connecting the control points are tangent to the 
curve. The position of the points of contact, as well 
as the control points, can be set interactively. 
Changing the position of these points leads to a 
change in the curve shape. This allows the user to 
flexibly adjust the curve shape. 

 

 

Figure 6 – A combination of two spline curves AC and 
BD and a straight line segments AB and CD for 

displaying the letter "S" 

Conditions are found in the form of inequalities, 
which must satisfy the parameters i , under which 

the curve exists and is unique. These conditions 
derive from the requirement of the diagonal 
superiority of the system matrix to determine the 
coefficients of polynomials.  

According to the experiments, the constructed 
curve makes it possible to approximate the conic 
sections closely and it can be used to construct 
complex planar figures and monotone datasets.The 

disadvantages include only the 1C  continuity, but 
for most practical applications such continuity is 
sufficient. Also, the limitations of the proposed 
algorithm can include the presence of conditions on 
the shape parameters that must be observed when 
constructing the curve. 

Like Bèzier curves, the proposed curve can be 
used in the systems of computer graphics and 
computer-aided design systems. Therefore, 
algorithmic innovations in this field are very 
important for the development of the functional 
capabilities of these systems, for graphically 
interpreting the results of experiments, creating 
fonts, templates, creating drawings of technical 
products, in particular, details and elements of 
vehicle shells, etc. 

The algorithm is proved to be effective also for 
the solution approximations for some inequalities, 
which are presented in [28]. 

The proposed algorithm can be used for practical 
tasks of trajectory tracking or following the path for 
various mechanisms, including unmanned ones. 

Work is underway to extend these ideas to the 
interpolation of two-dimensional data. 

 
6. REFERENCES 

[1] G. Farin, J. Hoschek, M.-S. Kim (Eds.), 
Handbook of Computer Aided Geometric 
Design, Elsevier, 2002. 

[2] D. D. Hearn, M. P. Baker, W. Carithers, 
Computer Graphics with OpenGL, 4th Edition, 
Pearson Education Limited, 2014. 

[3] T. W. Sederberg, Computer Aided Geometric 
Design. Course Notes, 2012. [Online]. 
Available at: http://hdl.lib.byu.edu/1877/2822. 

[4] P.E. Bezier, “How Renault uses numerical 
control for car body design and tooling,” 
Proceedings of the Society of Automotive 
Engineers Congress SAE, Detroit, paper 
680010, 1968. DOI:10.4271/680010. 

[5] S.-M. Hashemi-Dehkordi, P. P. Valentini, 
“Comparison between Bezier and Hermite 
cubic interpolants in elastic spline 
formulations,” Acta Mechanica, vol. 225, issue 
6, pp. 1809-1821, 2013. DOI: 10.1007/s00707-
013-1020-1. 



Oleg Stelia, Leonid Potapenko, Ihor Sirenko / International Journal of Computing, 18(4) 2019, 422-430 

 

 429

[6] G. Farin, “Geometric Hermite interpolation 
with circular precision,” Computer Aided Des., 
vol. 40, issue 4, pp. 476-479, 2008. DOI: 
10.1016/j.cad.2008.01.003. 

[7] R. T. Farouki, “The Bernstein polynomial 
basis: A centennial retrospective,” Computer 
Aided Geometric Design, vol. 29, issue 6, pp. 
379-419, 2012. DOI: 10.1016/j.cagd.2012.03. 
001. 

[8] R. Levien, C. H. Sequin, “Interpolating splines: 
Which is the fairest of them all?”, Computer-
Aided Design and Applications, vol. 6, issue 1, 
pp. 91-102, 2009. DOI: 10.3722/cadaps. 
2009.91-102. 

[9] X. Han, “Piecewise quartic polynomial curves 
with a local shape parameter,” Journal of 
Computational and Applied Mathematics, vol. 
195, issue 1-2, pp. 34-45, 2006. DOI: 10.1016/ 
j.cam.2005.07.016. 

[10] L. Ya, “On the shape parameter and 
constrained modification of GB-spline curves,” 
Annales Mathematicae et Informaticae, issue 
34, pp. 51-59, 2007. 

[11] L. Yan, “Adjustable Bezier curves with simple 
geometric continuity conditions,” Math. 
Comput. Appl., vol. 21, issue 4, pp. 44, 2016. 
DOI: 10.3390/mca21040044. 

[12] H. Hang, X. Yao, Q. Li, M. Artiles, “Cubic B-
spline curves with shape parameter and their 
applications,” Mathematical Problems in 
Engineering, vol. 2017, article ID 3962617, 
7 pages, 2017. DOI: 10.1155/2017/3962617. 

[13] L. Birk, T. L. McCulloch, “Robust generation 
of constrained B-spline curves based on 
automatic differentiation and fairness 
optimization,” Computer Aided Geometric 
Design, vol. 59, pp. 49-67, 2018. 

[14] X.-A. Han, Y. C. Ma, X. L. Huang, “The cubic 
trigonometric Bezier curve with two shape 
parameters,” Applied Mathematics Letters, vol. 
22, issue 2, pp. 226-231, 2009. DOI: 
10.1016/j.aml.2008.03.015. 

[15] M. Dube, R. Sharma, “Quadratic nuat B-spline 
curves with multiple shape parameters,” 
International Journal of Machine Intelligence, 
vol. 3, issue 1, pp. 18-24, 2011. DOI: 
10.9735/0975-2927.3.1.18-24. 

[16] E. Troll, “Constrained modification of the 
cubic trigonometric Bezier curve with two 
shape parameters,” Annales Mathematicae et 
Informaticae, vol. 43, pp. 145-156, 2014. 

[17] L. Yan, “Cubic trigonometric nonuniform 
spline curves and surfaces,” Mathematical 
Problems in Engineering, vol. 2016, article ID 
7067408, 9 pages, 2016. DOI: 10.1155/2016/ 
7067408. 

[18] U. Bashir, M. Abbas, J. M. Ali, “The G2 and G2 
rational quadratic trigonometric Bezier curve 
with two shape parameters with applications,” 
Appl. Math. Comput., vol. 219, issue 20, pp. 
10183-10197, 2013. 

[19] V. V. Borisenko, “Construction of optimal 
Bezier splines,” Fundamental and Applied 
Mathematics, vol. 21, issue 3, pp. 57-72, 2016. 
(in Russian) 

[20] O. Stelia, L. Potapenko, I. Sirenko, 
“Application of piecewise-cubic functions for 
constructing a Bezier type curve of C1 
smoothness,” Eastern European Journal of 
Enterprise Technologies, vol. 2, issue 4-92, pp. 
46-52, 2018. DOI: 10.15587/1729-4061.2018. 
128284. 

[21] S. L. Kivva, O. B. Stelya, “A parabolic spline 
on a nonuniform grid,” Journal of 
Mathematical Sciences, vol. 109, issue 4, 
pp. 1715-1725, 2002. DOI: 10.1023/A: 
1014385915935. 

[22] H. A. Akima, “New method of interpolation 
and smooth curve fitting based on local 
procedures,” Journal of the Association for 
Computing Machiners, vol. 17, issue 4, pp. 
589-602, 1970. 

[23] F. N. Fritsch, R. E. Carlson, “Monotone 
piecewise cubic interpolation,” SIAM Journal 
of Numerical Analysis, vol. 17, issue 2, pp. 
238-246, 1980. 

[24] F. Arándiga, D. F. Yáñez, “Third-order 
accurate monotone cubic Hermite interpolants,” 
Applied Mathematics Letters, vol. 4, pp. 73-79, 
2019. DOI: 10.1016/j.aml.2019.02.012. 

[25] R. L. Burden, J. Douglas Faires, Numerical 
Analysis, 9th Edition, Boston, MA: 
Brooks/Cole, Cengage Learning, 2011. 

[26] A. A. Samarsky, Theory of Difference Schemes, 
Moscow, Nauka, 1977, 656 p. (in Russian). 

[27] M. Floater, “High-order approximation of conic 
sections by quadratic splines,” Computer Aided 
Geometric Design, vol. 12, issue 6, pp. 617-
637, 1995. 

[28] G. V. Sandrakov, “Homogenization of 
variational inequalities for problems with 
regular obstacles,” Doklady Akademii Nauk, 
vol. 397, issue 2, pp. 170-173, 2004. 

 

 



Oleg Stelia, Leonid Potapenko, Ihor Sirenko / International Journal of Computing, 18(4) 2019, 422-430 

 

 430

 

Oleg Stelia, graduated 
Faculty of Cybernetics, Kyiv 
State University named after 
T.G. Shevchenko in 1978. 
Now he works as Head of the 
Computational Methods in the 
Mechanics of Continuous 
Media Laboratory, Faculty of 
Computer Science and Cyber-
netics, Taras Shevchenko Na- 

tional University of Kyiv, Ukraine. 
Areas of scientific interests: Spline theory, 

difference methods for solving differential equations, 
ballistics, mathematical modeling and software in the 
environmental problems. 
 

 

Leonid Potapenko, gradua-
ted Faculty of Cybernetics, 
Kyiv State University named 
after T.G. Shevchenko in 
1978. Now he works as re-
searcher of the Computational 
Methods in the Mechanics of 
Continuous Media Laboratory, 
Faculty of Computer Science 
and Cybernetics, Taras Shev- 

chenko National University of Kyiv, Ukraine. 

Areas of scientific interests: computer methods 
and mathematical simulation of the continuous 
media mechanics problems, ballistics. 
 

 

Ihor Sirenko, graduated 
Faculty of Cybernetics, Kyiv 
State University named after 
T.G. Shevchenko in 1978. 
Now he works as senior 
engineer of the Computational 
Methods in the Mechanics of 
Continuous Media Laboratory, 
Faculty of Computer Science 
and Cybernetics, Taras Shev- 

chenko National University of Kyiv, Ukraine. 
Areas of scientific interests: computer methods 

and simulation in ecological and biological systems, 
ballistics. 

 

 


