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Abstract: In this paper we propose a new practical performance index for ranking of numerical methods. This 
index may be very helpful especially when several methods are tested on a large number of instances, since it provides 
a concise and precise idea of the relative efficiency of a method with the respect to the others. In order to evaluate the 
efficiency of the proposed rule, we have applied it to the numerical results presented on previously published papers. 

 
Keywords: Performance index, Optimization software performance. 

 
1. INTRODUCTION 

The increasing emphasis on the computational 
aspects of optimization methods and their impact on 
the solution real-world applications have prompted 
the need to design meaningful indices for 
performance evaluation. However, many difficulties 
arise in evaluating and interpreting the results in a 
fair and balanced way. 

First of all, we have to establish the object of 
evaluation. Actually, for any method, it is possible to 
define different algorithms and software 
implementations whose efficiency strongly depends 
on the compiler and on the hardware platform used. 

Furthermore, we have to choose the criteria on 
which we shall carry out the evaluating process. The 
traditionally used performance measures are: the 
computational performance (speed and memory, 
robustness), the solution quality (accuracy), and the 
scope (problem type and size). 

A frequently used notion in the comparison of 
numerical methods is the one of “the best method”. 
The “best” is a relative concept that depends on 
subjective criteria, whose choice depends on the 
goal of the comparison: the best may mean the 
fastest, or the easiest to apply, or the most reliable. 

Another important issue to address in the 
evaluating process is the choice of the test problems. 
The testing phase of optimization software could be 
inadequate for several reasons: the number of test 
problems could be too small, the instances could 

have small size and present some regularity. We 
observe that the testing is a very crucial phase since 
if any error occurs in the manner of carrying out the 
experiments, the same error may affect any 
performance index used to compare the results. 

Solving the controversy surrounding the 
reporting of results from scientific experiments is 
out the scope of this paper. Relevant papers try to 
give instructions on the manner of carrying out 
numerical experiments in a correct way. Interested 
readers are referred, for example, to [1], [2] and [3], 
where the authors examined the issues involved in 
reporting on the empirical testing of parallel 
mathematical programming algorithms. 

The main contribution of this paper is to define a 
new performance index, once the user has stated 
clearly what is tested, which performance criteria are 
considered, and which performance measure is used. 
The proposed index gives a concise idea of the 
relative efficiency of a method with respect to the 
others, when it is applied to solve a given set of test 
problems. 

The rest of the paper is organized as follows. In 
the next section we introduce a simple example 
showing the weaknesses of certain known rules. In 
Section 3, we define our performance index. Finally, 
in Section 4, we illustrate the efficiency of our rule 
by considering the computational results of some 
numerical methods proposed to solve two classes of 
optimisation problems. 
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2. AN EXAMPLE 

Let p be the number of test problems, m the 
number of methods that we want to rank, and let Ci,,j 
be the cost (for example the execution time) required 
to solve test j (j = 1, 2,..., p) by the method i (i = 1, 
2,..., m).   

Let us consider the simple case with m = 2 and p 
= 3 reported in Table 1. 

 

Table 1 - Prediction results 

Method Test 1 Test 2 Test 3 
1 60 10 5 
2 30 20 10 

 
In order to compare the results of Method 2 with 

respect to those of Method 1, a straightforward rule 
is to consider the ratio of the sum of the costs: 
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Another simple rule is defined by the following 

index: 
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corresponding to the average speed-up of Method 

1 over Method 2. The value of R(1) shows that 
Method 2 works better than Method 1, whereas R(2) 
indicates that there is no difference in the 
performance of the two methods. However, the use 
of both indices may be misleading since Method 2 
improves 50% over Method 1 on the first test (the 
improvement of Method 2 over Method 1 for 
solving test j is defined by the ratio (C1,j/C2,j)/C1,j), 
whereas Method 1 improves 50% over Method 2 for 
the other two tests. This means that Method 1 is 
globally more efficient than Method 2. 

This simple example suggests that the above 
exposed rules are not reliable. Actually, R(1) does not 
consider the difference among the costs required by 
each method to solve all the test problems. On the 
other hand, R(2) is useful only if the ratio C1,j/C2,j is 
greater than or equal to one, for all the test. 

Other difficulties arise when, for some tests, one 
method either fails to solve the test problem or it 
finds a different solution with respect to the one 
obtained by the other methods. In this situation, one 

possibility is to avoid to include in the comparison 
the results of this particular test problem. 
 
 
3. A NEW PRACTICAL PERFORMANCE 

INDEX 

Much work has been devoted in defining 
performance measures for comparing of 
optimization software developed for specific 
problems. The interested readers are referred, for 
example, to [4], [5], [6] and [7]. Our index is more 
general and can be used to compare a large number 
of methods tested on a specified set of instances. 
More specifically, for each method i,  we define the 
total quality index Ri by the following pair of values: 
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Here Ri

(SQ) is a measure of the solution quality 
(i.e., robustness) of the method i. In particular, we 
have chosen to define Ri

(SQ)  as the percentage of 
successes, i.e. the ratio between the number of 
successful exits over the number p of test problems; 
as such  Ri

(SQ∈ [0,1]. We observe that this index may 
be omitted when the value is equal for all the 
methods or meaningless for some particular 
application. 

Ri
(CP) is the index of the computational 

performance defined as follows: 
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More specifically, for each method i and for each 

test problem j, we define a score ri
(j) which is equal 

to the ratio of the cost of this method over the cost of 
the best-considered method. Thus, Ri

(CP) is an 
average score that indicates how much a particular 
method has been less efficient, on average, than the 
most successful method (defined from now on as the 
ideal method). This value takes into account not 
only if a method works better than the others, but 
also how much the method outperforms the others. 

 
For the example reported in Table 2, we have: 
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Table 2 - Our performance index 

Method Test 1 Test 2 Test 3 
1 60 10 5 
2 30 20 10 
r1 2 1 1 
r2 1 2 2 

and we obtain R1
(CP) = 

_

3.1  and R2
(CP) =

_

6.1  

We observe that our definition of Ri
(CP) can be 

viewed as a generalization of the rule used by   
Brown and Bartholomew-Biggs in [8] to rank some 
methods for solving unconstrained optimization 
problems. Their idea consists in assigning 1 point to 
the most successful code, 2 points to the second, and 
so on. In this way, the total score obtained for each 
method reflects the frequency of outperforming. The 
main drawback of the Brown-Biggs' rule is that it 
provides a qualitative ranking rather than a 
quantitative one. 

It is worth mentioning that the index of 
computational performance R(CP) is particularly 
useful also to establish the speed-up of parallel 
methods and to compare their efficiency with the 
sequential counterparts [9]. Obviously, this is 
possible only when the costs Ci,,j used to rank the 
methods correspond to the execution times. 

In the case of failure for some test problem j, we 
suggest to replace the failure with the maximum cost 
computed over all the methods used for solving test 
j. This solution seems to be reasonable because the 
main aim of the rule is to rank the methods using a 
relative index (i.e., we can only establish if a method 
works better than the others considered for solving 
the limited set of selected test problems). In this 
case, the index R(SQ) will take into account the 
percentage of the failure of the method. 

 
4. NUMERICAL ILLUSTRATION 

In order to evaluate the efficiency of our rule, we 
have considered methods proposed in the literature 
to solve two classes of classical optimization 
problems, i.e. the shortest path problem in a directed 

graph, and the problem of finding the stationary 
points of a nonlinear and unconstrained function. 

In the former case, we use the results collected by 
Bertsekas [10] on 16 network problems solved by 
using the Bellman-Ford (B-F) method, the D'Esopo-
Pape (D-P) method, the Small Label First (SLF) 
method, the Threshold (THR) method and the 
combination of the last two methods (SLF-THR). 
The cost chosen by Bertsekas to evaluate the 
performance of the method is the execution time (in 
secs). 

On the basis of the results reported in table 3, we 
obtain the ranking of Fig. 1. Note that, we have 
reported only the values of the index R(CP) of the 
computational performance, since all the methods 
terminate with the optimal solution. 

Our index reveals that the D-P method is about 
11 times slower on the average than the SLF-THR, 
whereas the performance of SLF-THR is very close 
to that of the ideal method, which solves all the test 
problems in the minimum time over all the 
considered methods (this means that none of the 
methods is ideal). The analysis of the results 
presented by  Bertsekas in [10] completely matches 
our conclusions: “... the SLF method can also be 
combined with the threshold algorithm thereby 
considerably improving its practical performance”, 
or: “... for some test problems the D'Esopo-Pape 
algorithm performs very poorly; we have not seen in 
the literature any report of a class of randomly 
generated sparse problems where this algorithm 
exhibits such poor behaviour”, and so on. 

As another example we have considered the 
numerical results reported in [11] to solve  
unconstrained non linear optimisation problems by 
limited memory Quasi-Newton methods. In 
particular, comparative tests have been conducted on 
a set of 18 well-known test problems (three of these 
have two different dimensions). Among the 
noticeable variety of collected results, we have 
considered (according to the choice of the authors of 
[10]) only the CPU time for nine different codes, 
whose names are reported in Table 4. 
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Figure 1 - Ranking based on our rule 
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Table 3 - Time (in seconds) to solve 16 network problems by 5 shortest paths methods 

Test Problem B-F D-P SLF THR SLF-THR 
1 0.117 0.1 0.083 0.066 0.05 
2 0.467 0.583 0.383 0.2 0.2 
3 1,25 1.82 1.13 0.533 0.433 
4 1.983 2.683 2.017 0.867 0.717 
5 0.417 0.4 0.333 0.217 0.233 
6 0.993 0.917 0.717 0.5 0.533 
7 1.933 1.767 1.483 0.95 1.017 
8 3.333 2.75 2.1 1.5 1.62 
9 1.5 6.65 1.28 1.47 1.15 
10 7.28 332.2 5.4 6.42 4.43 
11 14.6 279.2 10.3 12.73 8.677 
12 19.97 326 13.88 18 11.95 
13 0.483 1 0.55 0.3 0.2 
14 0.883 1.783 1.033 0.733 0383 
15 1.233 2.333 1.56 0.95 0.65 
16 1.75 3.567 2.033 1.85 0.817 

 

Table 4 - Nonlinear optmization codes used for computational experiments 

Code Reference Code Reference 
C1 CONMIN-CG C2 CONMIN-BFGS 
C3 E04DGF C4 L-BFGS (m=3) 
C5 L-BFGS (m=5) C6 L-BFGS (m=7) 
C7 BBVSCG (m=3) C8 BBVSCG (m=5) 
C9 BBVSCG (m=7)   

 
The results are summarized in Table 5. 
 

Table 5 - Time (in seconds) to solve 18 unconstrained optimization problems by the 9 codes 

P C1 C2 C3 C4 C5 C6 C7 C8 C9 
1 0.0233 0.0238 0.0211 0.0278 0.0316 0.0383 0.0229 0.0326 0.0315 
2 0.026 0.0557 0.0301 0.0556 0.0523 0.0513 0.0456 0.0619 0.0516 
3 0.0028 0.0058 0.007 0.0059 0.0073 0.0074 0.0032 0.0042 0.0031 
4 0.0912 0.1042 0.077 0.1752 0.2045 0.2461 0.1066 0.1359 0.1723 
5 0.0109 0.0285 0.0278 0.031 0.0361 0.0383 0.0175 0.023 0.0279 
6 0.0052 0.0373 0.0148 0.0187 0.0224 0.0256 0.0129 0.0142 0.0218 
 0.0224 1.7774 0.0464 0.0733 0.0936 0.1125 0.0288 0.0586 0.0707 

7 0.4707 0.287 F 3.5291 0.7419 0.4794 0.4597 0.4616 0.4111 
 2.1548 1.1544 F F 5.7458 3.2839 1.8518 1.4923 0.7219 

8 0.0604 3.5806 F 0.1266 0.159 0.1824 0.1276 0.1066 0.1271 
 0.1437 0.0355 0.1997 0.0182 0.0261 0.0236 0.0186 0.019 0.0228 

9 0.2719 F 0.1596 0.4425 0.5301 0.5577 0.2381 0.2883 0.3168 
10 0.0063 0.0073 0.0097 0.0142 0.0162 0.0177 0.0098 0.0108 0.0191 
11 0.4817 0.0356 0.0231 0.0432 0.0305 0.0387 0.0344 0.0262 0.0279 
12 0.0207 0.0183 0.033 0.0337 0.0355 0.0402 0.0187 0.0199 0.0222 
13 0.1457 2.1017 0.0749 0.1094 0.1345 0.1574 0.0968 0.1431 0.1422 
14 0.0457 1.7946 0.0378 0.0706 0.0941 0.1227 0.0576 0.0645 0.0854 
15 0.1247 2.0963 0.0536 0.1367 0.1512 0.1243 0.0854 0.1087 0.1494 
16 0.0078 0.0103 0.0114 0.015 0.0151 0.0169 0.013 0.0161 0.0163 
17 0.0497 0.0362 0.0871 0.1073 0.1152 0.126 0.0272 0.0253 0.0262 
18 8.8249 26.57 9.0296 8.2528 6.6732 6.6005 8.5565 7.229 9.2365 
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By ranking the codes according to our rule, we 
obtain the scores reported in Fig. 2. 
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Figure 2 - Ranking based on our rule 

 
In [11] it is pointed out that all methods have a 

practical appeal. E04DGF appears to be the least 
efficient method for the library test problems, and 
when the number m is increased from 3 to 7, there is 
no significant improvement in performance. Similar 
conclusions (and many others) can be derived by 
examining the details of the results of Figure 2. This 
confirms that our rule is sound and reliable. 

 
5. CONCLUSION 

In this paper we have proposed a new cumulative 
index for ranking numerical methods used to solve 
optimization problems. The results have confirmed 
that our index is sound and reliable and, thus, it 
promises to be a useful tool to measure the 
performance of any optimization method, even 
implemented in parallel, especially when several 
methods are used for the comparison and the number 
of test problems is so large to make difficult the 
analysis of the numerical results using other 
approaches. 

 
ACKNOWLEDGEMENT 

This research was partially supported by the 
Center of Excellence for High Performance 
Computing, University of Calabria, Italy. This 
support is gratefully acknowledged. 

 
 
 
 

REFERENCES 
1. R.H.F. Jackson, P.T. Boggs, S.G. Nash and S. 

Powell, “Guidelines for Reporting Results of 
Computational Experiments: Report of the ad hoc 
Committee”, Mathematical Programming, Vol. 49, 
pp. 413-425, 1991. 

2. F.A. Lootsma, “Comparative Performance 
Evaluation, Experimental Design, and Generation of 
Test Problems in Non-Linear Optimization”, In K. 
Schittkowski (editor), Computational Mathematical 
Programming, NATO ASI Series, Springer-Verlag, 
Berlin, pp. 249-260, 1985. 

3. R.S. Barr, and B.L. Hickman, “Reporting 
Computational Experiments with Parallel 
Algorithms: Issues, Measures, and Experts' Options”, 
ORSA Journal on Computing, Vol. 1, pp. 2-32, 1993. 

4. K.L. Hiebert, “An Evaluation of Mathematical 
Software that solves Nonlinear Least Square 
Problems”, ACM Transaction of Mathematical 
Software, Vol. 7, pp. 1-16, 1981. 

5. J.J. More, B.S. Garbov, and K.E. Hillstrom, “Testing 
Unconstrained Optimization Software”, ACM 
Transaction of Mathematical Software, Vol. 7, pp. 
17-41, 1981. 

6. K.L. Hiebert, “An Evaluation of Mathematical 
Software that solves Systems of Nonlinear 
Equations”, ACM Transaction of Mathematical 
Software, Vol. 8, pp. 5-20, 1982. 

7. M. Al-Baali, “A Rule for Comparing Two Methods 
in Practical Optimization”, Technical Report No. 119, 
Department of Systems, University of Calabria, 
Rende, Italy, 1992. 

8. A.A. Brown and M.C. Bartholomew-Biggs, “Some 
Effective Methods for Unconstrained Optimization 

11 



A.Attanasio, P.Beraldi, F.Guerriero / Computing, 2003, Vol. 2, Issue 1 (#3), 7-12 

 

 

Based on the Solution of Systems of Ordinary 
Differential Equations”, Technical Report No. 178, 
Numerical Optimization Centre, The Hatfield 
Polytechnic, Hatfield, England, 1987. 

9. D.P. Bertsekas, F. Guerriero and R. Musmanno, 
“Parallel Shortest Paths Methods for Globally 
Optimal Trajectories”, In J. Dongarra, L. Grandinetti, 
J. Kowalik, G. Joubert (editors), High Performance 
Computing: Technology and Applications, Elsevier, 
Amsterdam, pp. 303-315, 1995. 

10. D.P. Bertsekas, “A Simple and Fast Label Correcting 
Algorithm for Shortest Paths”, Networks, Vol. 23, pp. 
703-709, 1993. 

11. X. Zou, M. Navon, M. Berger, K.H. Phua, T. Schlick 
and F.X. Le Dimet, “Numerical Experience with 
Limited-Memory Quasi-Newton and Truncated 
Newton Methods”, SIAM Journal on Optimization, 
Vol. 3, pp. 582-608, 1993. 
 
 

Andrea Attanasio is graduated 
in Electrical Engineering (1989) 
at University of Calabria; he 
obtained a master degree in 
Information Technology (1990) 
at CEFRIEL Center in Milan. 
He worked several years in 
multinational information 
technology companies. Actually 
he works as Technical Director 
of the Center of Excellence for 

High Performance Computing at University of 
Calabria, a multi disciplinary center which addresses 
many topics, including grid computing, optimization 
and simulation of large scale systems. His areas of 
interest are: high performance computing; grid 
computing; optimization of logistics and 
transportation systems; information & 
communication technology. 
 
Patrizia Beraldi is an 
Assistant Professor of 
Operations Research at the 
Faculty of Engineering, 
University of Calabria. She 
received in 1999 the Ph.D in 
Computer Science and 
System Engineering from the 
University of Calabria.  Her 
major research interests: 
network optimisation, stochastic programming, 
theory and applications, and parallel computing. 

Her publications have appeared in a variety of 
journals, including Computational Optimization and 
Applications, Optimization Methods & Software, 
Journal of Optimization Theory and Applications, 
Parallel Computing, Operations Research, 
Computers and Operations Research, European 
Journal of Operational Research. 
 
 
 

Francesca Guerriero is an 
Associate Professor of 
Operations Research at the 
University of Calabria, Italy, 
Faculty of Engineering. She 
received a Ph.D in Computer 
Science and System 
Engineering from the 
University of Calabria. Her 
major research interests are 
in optimisation theory, 

logistics, network optimisation and parallel 
computing. 

Her publications have appeared in a variety of 
journals, including Computational Optimization and 
Applications, Optimization Methods & Software, 
Journal of Optimization Theory and Applications, 
Parallel Computing, Operations Research, 
Computers and Operations Research, European 
Journal of Operational Research. 

 
 
 
 

12 


