
Ibrahim Obeidat, Mazen AlZubi / International Journal of Computing, 18(3) 2019, 278-284

 278

DEVELOPING A FASTER PATTERN MATCHING ALGORITHMS
FOR INTRUSION DETECTION SYSTEM

Ibrahim Obeidat 1), Mazen AlZubi 2)

1) The Hashemite University, Jordan, imsobeidat@hu.edu.jo

2) Zayed University, United Arab Emirates, zoubicom@gmail.com

Paper history:
Received 25 February 2019
Received in revised form 18 July 2019
Accepted 10 September 2019
Available online 30 September 2019

Keywords:
Algorithms;
Pattern Matching;
Boyer-More;
Aho-Corasick;
Rabin Karp;
Knuth-Morris-Pratt;
IDS: Intrusion Detection System;
signature based malicious.

Abstract: Fast pattern matching algorithms mostly used by IDS, which are
considered one of the important systems used to monitor and analyze host and
network traffic. Their main function is to detect various types of malicious and
malware files by examining incoming and outgoing data through the network. As
the network speed growing, the malicious behavior and malware files are
increasing; the pattern matching algorithms must be faster. In this research paper
we are presenting a new method of pattern matching, which could be a platform
for enhancement in the future. In this field, researchers spared no efforts to
introduce fast algorithms for pattern matching. The Most popular algorithms are
Boyer-Moore, Aho–Corasick, Naïve String search, Rabin Karp String Search
and Knuth–Morris–Pratt. Based on studying these techniques we are developing
algorithms that process the text data, using different algorithm technique and
then we’ll test the performance and compare the processing time with the fastest
proven pattern matching algorithms available. Document the result and draw the
overall conclusion.

Copyright © Research Institute for Intelligent Computer Systems, 2019.
All rights reserved.

1. INTRODUCTION

The rapid growth in information technology and
specifically the hardware capabilities brings a new
challenge to security. Intrusion detection system
must perform to the optimal level to detect signature
based malicious behavior. The technique behind the
detection system is the algorithms being
implemented. The algorithm is meant to process
text. Pattern matching is to locate specific pattern in
a raw data. The faster the compute system the more
efficient the pattern matching needs to be. Therefore,
there is a collective demand to bring a faster pattern-
matching algorithm to keep pace with hardware
rapid development, performance improvement and
innovations. On the other hand, the accuracy and the
efficiency need to be maintained using such
algorithms. We are developing a new text processing
technique and we’ll measure its performance. The
algorithm will index the text string and create an
array of similar character indexes. The arrays of the
characters will be responsible to assemble the

pattern need to be matched or detected. We will
conduct comparison with two of the fastest patterns
matching algorithms to date. They are Aho-Corasick
and Boyer-Moore. If the performance is less, then it
might be considered as new algorithm where further
research and enhancement could be done.

2. RELATED WORK

2.1 OVERVIEW

Pattern matching algorithms also called a string
searching algorithms are class of strings algorithms
that processes a large number of or text to find a
place of patterns. String matching consists in finding
one, or more generally, all the occurrences of a
pattern in a text. The pattern and the text are both
strings built over a finite alphabet. In several
applications, texts need to be structured before
searched. Even if no further information is known on
their syntactic structure, it is possible and indeed
extremely efficient to build a data structure that
supports searches [1]. Because the data of

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Ibrahim Obeidat, Mazen AlZubi / International Journal of Computing, 18(3) 2019, 278-284

 279

monitoring system updates constantly and the size of
data expands day by day, the financial institutions
have to spend much time in matching the database of
account holders and clients’ transaction. The earliest
algorithm of matching single pattern is the algorithm
of Brute-Force (the algorithm of BF), which is
algorithm of matching in order and the efficiency is
low. In 1977, Knuth D.E, Morris J.H and Pratt V.R
proposed an algorithm of matching single pattern,
the algorithm of KMP, which eliminate the problem
of the comparison of backtracking. In the same year,
Boyer and Moore proposed the algorithm of BM [2],
which can skip by the rule of bad character and good
postfix. The algorithm of BM performs efficiently in
the algorithm of matching single pattern. In 1975,
Aho and Corasick proposed the algorithm of AC [3],
which uses the finite state machine to match strings
and can match all the pattern strings by scanning text
strings once. However, the algorithm of matching
single pattern scans text strings once, and it only can
match one pattern string. In 1993, Fan Jang-Jong
proposed the algorithm of AC-BM [4], which uses
the idea of the finite state machine of AC in
preprocessing and uses the idea of skipping of BM
in scanning. The algorithm highly improves the
traditional the algorithm of AC in the part of
scanning and matching.

We are developing an algorithm on that bases.
Boyer Moore and Aho Corasick are the best efficient
pattern matching algorithms. A lot of variations
introduced and built based on the string search
concepts and techniques implemented in these
algorithms. Our main focus will be on these two
algorithms hence they are the fastest pattern
matching available.

2.2 BOYER-MOORE

BM algorithm (Boyer-Moore) [2] is a kind of
matching algorithm based on postfix matching
backwards from right side to left side is a distinctive
characteristic of BM algorithm. When there is a
character that fails to match in text string T, T[i] =c,
it will skip in the text string to speed up the pattern
string moving. If c is a string in P, finding out the
rightmost c in P and then moving P to make T[i]
align it; if c isn’t a string in P, moving P to make
P[0] align T[i+1].The fundamental of BM algorithm:
matching one character at a certain distance in T,
and then determining whether skip to the right side
and the distance of skipping according to the
character, which is matched at present, whether
appears in P or appears in which location. If it

doesn’t skip, it will compare with P from the right to
the left in the present location. Otherwise it will skip
to the next location of P according to the skipping
distance that has been computed in advance the
algorithm also includes two parts, preprocessing and
scanning. In the part of preprocessing, it just
considers the pattern string p and the set of strings Σ.
We introduce a function of shift (c). It shows the
situation that every character c appears in pattern
string P, and the distance that the pattern string
moves. The function value of shift is also saved in
an array the following is a method of computing the
array of shift. If c appears in the pattern string P,
find out the location of c in the rightmost of P, and
the location is index. The value of function is the
distance between the c of rightmost and the
rightmost of P, it is m-1-index; if c doesn’t appear in
the pattern string P, the value is the length of P. For
example, Σ={a,b,c,d} and the pattern string
P = abacab, we can compute it the Shift(a)=1,
Shift(b)=0, Shift(c)=2, Shift(d)=6. And the time
complexity of shift is O(m+|Σ|). Although the
average efficiency of BM algorithm is high, it
doesn’t performance well in the worst case. The
complexity of the worst case is O(mn), such as, a
text string =aaa…a, a pattern string P=baa…a. BM
algorithm is designed as a kind of algorithm that
matches the single pattern string in text. Among the
algorithms of matching single-pattern, BM
algorithm is proved to performance best. However,
when there are various kinds of key words to match
in the filtering and matching of content, the BM
algorithm has to match every kind of pattern. The
time complexity of the BM algorithm is O (n) when
matching the single pattern, but it is O (kn) when
matching the multiple patterns.

2.3 AHO-CORASICK ALGORITHM

AC algorithm (Aho-Corasick) [3] is a kind of
algorithm that based on finite state machine. It
preprocesses the set of pattern strings to form a state
machine in a tree before start matching. It just scans
the text string T once, and then it can find out the all
patterns that match with T in P. The algorithm also
includes two parts, preprocessing and scanning. It
generates three functions: goto, failure function: and
output function. The following is the matching
process of AC algorithm: starting from state zero,
picking up a character from the text string, and then
going to the next state with goto function and the
failure function. When the output function of some
state is not a null, it means that it successes to find

Ibrahim Obeidat, Mazen AlZubi / International Journal of Computing, 18(3) 2019, 278-284

 280

out the pattern string. It structures the finite state
machine in the part of preprocessing, and the time
complexity of structuring transition function is
O (M), M is the total length of all patterns. The time
complexity of structuring the failure function is
O (M), too. In the part of scanning, it scans every
character of the text T on the basis of the finite state
machine that has structured before. Every character
just has one transition function, and the time
complexity of scanning is O (n). So, the total time
complexity of the algorithm that based on the finite
state machine is O (M+n). The time complexity is
related to the length of text and pattern but is not
related to the content of text and pattern. It means
that the average time of scanning in the best case or
the worst case is the same, O (M+n).

The disadvantage of AC algorithm is that the
demand of space is large. Too many matching
patterns will occupy plenty of space; even maybe
make the system crash. So, AC algorithm can satisfy
the demand and performances well in the case of a
few patterns.

However, it doesn’t skip when it scans the text. It
inputs the text in order, which means it can’t skip the
unnecessary comparison. Obviously, AC algorithm
is not the best matching algorithm impractical
process of matching.

2.4 RABIN-KARP ALGORITHM

Rabin-Karp Algorithm is the simplest string
searching algorithm. This algorithm was developed
by Michael O. Rabin and Richard M. Karp in 1987.
This algorithm uses the hash function to discover the
potential pattern in the input text. For the length of
text n and pattern p of mutual length m, its average
and best-case running time is O (n+m) in space
O (p), and also the worst-case time is O (nm) in
space O (m) [5]. It is used to discover the hash value
of the certain pattern substring and then it discovers
the hash value of all possible m length substring of
the input text. If the hash value of the pattern and
text substring match than it returns the value
otherwise next substring value is matched to
calculate the string of length m.

2.5 KNUTH-MORRIS-PRATT ALGORITHM

The Knuth–Morris–Pratt were developed a linear
time string searching algorithm by analysis of the
brute force algorithm or naïve algorithm. The
algorithm was developed in 1974 by Donald Knuth
and Vaughan Pratt, and independently by James H.
Morris and they published it jointly in 1977.The

Knuth-Morris-Pratt algorithm moderates the total
number of comparisons of the pattern against the
input string [6]. A matching time of O(n) is
accomplished by evading associations with
essentials of ‘S’ that have earlier been involved in
the comparison with some of the specific element of
the pattern ‘p’ to be matched. i.e., backtracking on
the string ‘S’ certainly not occurs [7].

Components of KMP algorithm Include 1. The
prefix function Π for a pattern summarizes the
knowledge regarding however the pattern matches in
contradiction of shifts of itself. This information
may be accustomed avoid unusable shifts of the
pattern “p”. In other words, this succeeds avoiding
backtracking on the string “S”.2. The KMP Matcher
With string “S”, pattern “p” and pre-fix function “Π”
as inputs, the prevalence of “p” in “S” is found and
the algorithm yields the variety of shifts of “p” after
which the existence is found. 3. Running - time
analysis: The time period for computing the prefix
function is O (m) and time period of matching
function is O (n).

3. PROPOSED SOLUTION

3.1 METHODOLOGY

Our approach was studying multiple string-
matching algorithms techniques and come up with
new idea. We are introducing a function that will
process the data by creating arrays of indexes. We
create array for each character and store its index, if
the character occurred more than once within the
text then it’s index will be added in the character
array that belongs to. Then we will try to find the
pattern required to match based on the characters
indexes search within the indexes array created.
We’ll compare the performance of our function
against Knuth–Morris–Pratt algorithm and document
the result.

3.2 CONCEPT

Knowing the techniques of the string search, like
Boyer Moore, which use rules to shift the character,
and Aho-Corasick, which create automata of
characters and links, we are building something
similar. The concept behind our function is very
simple, and it is working as following:

Stage One:

Store All Characters in the String provided into a
Temporary array in small Letters:

CharArray (M) = [], where M = Length(string)

Ibrahim Obeidat, Mazen AlZubi / International Journal of Computing, 18(3) 2019, 278-284

 281

Example: Suppose we have the following string
 “intrusion detection system”, M=26
So, we can represent this string inside the array

as shown in Fig. 1:

Figure 1 – String inside the CharArray

So,
CharArray (0) = “i”, CharArray (1) = “n”,
CharArray (2) = “t”, CharArray (3) = “r”,
CharArray (4) = “u”, CharArray (5) = “s”,
CharArray (6) = “i”, CharArray (7) = “o”,
CharArray (8) = “n”. Until end of text.

And the pattern that we wanna to find inside this

string is the word (system):
Pattern = “system”, Where N = Length (Pattern)

Stage Two:
For Each Character in Pattern, Locate the index

of this character in the text and save the indexes into
Temporary Grid or Array as follow:

Figure 2 – Locate pattern letters indexes inside the
string

Note: Please note that when the letter is repeated
in the pattern no need to create a new row for the
repeated letter because it indexes was calculated and
saved with the array by the first time this letter
found in the pattern.

Stage Three
Now we will start the algorithm search as follow:

One of the features of our algorithm is it go's
directly to the first character in the pattern as shown
below, it creates 2 indexes, first one is called
(Current_Index) this index holds the index of the
first character inside the pattern. Second index
called (Next_Index) and its value = Current_Index
+ 1

Current Index = 5, First character in the pattern

Figure 3 – First Character Search in the pattern

Explanation:

Logically, when searching for a pattern, this
pattern has a special signature, when we analyzed
this signature, we find that the letters or numbers
that make up this pattern will be in order, for
example if we have this pattern: (system), then for
example if the letter (s) starts at cell number 25 so
the next letter will be exactly in cell number 26 then
next letter in cell number 27 and so on.

Now, return back to algorithm Since
Current_Index in position 5 and hold the letter (s),
and Next_Index in position 6 and hold the letter (i)
which is not apart from our pattern then the
algorithm cancel the current search and go’s directly
to next position index in letter (s) array which
is (20).

Current Index = 20, Next Index = 21

Since Current_Index in position 20 and hold the
letter (s), and Next_Index in position 21 and hold the
letter (y) which is apart from our pattern then
Current_Index stay at position 20 and Next_Index
will be incremented by 1, so in our case
Next_Index = 22.

Current Index = 20, Next Index = 22

Since Next_Index in position 22 and hold the

letter (s) which is apart from our pattern and letter
(s) is the next letter in the pattern, then
Current_Index stay at position 20 and Next_Index
will be incremented by 1, so Next_Index = 23.

Current Index = 20, Next Index = 23

Ibrahim Obeidat, Mazen AlZubi / International Journal of Computing, 18(3) 2019, 278-284

 282

Since Next_Index in position 23 and hold the
letter (t) which is apart from our pattern and letter (t)
is the next letter in the pattern, then Current_Index
stay at position 20 and Next_Index will be
incremented by 1, so Next_Index = 24.

Current Index = 20, Next Index = 24

Since Next_Index in position 24 and hold the

letter (e) which is apart from our pattern and letter
(e) is the next letter in the pattern, then
Current_Index stay at position 20 and Next_Index
will be incremented by 1, so Next_Index = 25.

Current Index = 20, Next Index = 25

Since Next_Index in position 25 and hold the

letter (m) which is apart from our pattern and letter
(m) is the next letter in the pattern, then
Current_Index stay at position 20 and Next_Index
will be incremented by 1, so Next_Index = 25.

Since the Length of our pattern is 6 and we found
our pattern inside the string given, so our algorithm
exits the search and return the value (1) indicates
that the pattern is found.

Some tips and features for proposed algorithm:

• At any time if the Next_Index will not be
matching next character in the pattern then,
the algorithm will move the Current_Index
into the next position of the letter (S) which
is position (22) and set Next_Index = 23 and
starts searching again.

• Also, for saving the time of searching, if the
remaining characters in the text >
length(pattern) then the algorithm will exit
the search and return the value of (0)
indicates that the pattern given is not found.

• Another feature for our algorithm, it helps to

locate each character index in a given text
means that we can use it in many cases like
(count each character inside the text, replace
the characters ...).

In the below figure we create the algorithm in
graphical user interface and save 10 patterns in
algorithm database and enter a text with length of
(452) Letters we run the program to find the
patterns, it takes (2.419) seconds to find the (10)
patterns inside the given text. And if you want to
know where these patterns are located inside the
given text just double click on the pattern in the
yellow grid and the pattern will be highlighted in the
given text.

Another feature for this algorithm it stores all
occurrence of the pattern inside the given text not
only the first occurrence.

Figure 4 – Results for the algorithm for 10 Patterns

3.3 TIME COMPLEXITY

We tested the new algorithm by matching 5, 10,
15 and 20 Patterns and we conclude that our
algorithm has two cases, case one: best case (O (n)),
case two: worst case (O (n+m)) the following Graph
shows the result of time complexity:

Figure 5 – Time Complexity for our Algorithm

Ibrahim Obeidat, Mazen AlZubi / International Journal of Computing, 18(3) 2019, 278-284

 283

3.4 COMPARISON BETWEEN AC AND
BM AND OUR ALGORITHM

The following graph shows the time complexity
for AC and Booyer-More Algorithms:

Figure 6 – Time Complexity for BM
Algorithm [6]

Boyer-Moor its worst-case complexity is

O (n+m). The thing is that in natural language
search Boyer-Moore does pretty Well.

4. CONCLUSION

There are Numerous basic string processing
techniques, a few of them are called varieties, they
are presented from well-known matching
algorithms, after numerous tests and comparisons,
we conclude that the performance of our algorithm
is superior than the Aho-Corasick and Booyer-More
algorithms. Within the future we are going do
improvements and enhancing on our algorithm to
come up with a better matching technique and faster
than the current one.

5. REFERENCES

[1] M. Crochemore, T. Lecroq, “Pattern-matching
and text-compression algorithms,” ACM
Computing Surveys (CSUR), vol. 28, issue 1,
pp. 39-41, March 1996.

[2] R.S. Boyer, J.S. Moore, “A fast string
searching algorithm,” Communications of the
ACM, vol. 20, issue 10, pp. 762-772, 1977.

[3] A. Aho, M. Corasick, “Efficient string
matching: an aid to bibliographic search,”
Communications of the ACM, vol. 18, issue 6,
pp. 333-340, 1975.

[4] J. Fan, K. Su, “An efficient algorithm for
matching multiple patterns,” IEEE

Transactionson on Knowledge and Data
Engineering, vol. 5, issue 2, pp. 339-351, 1993.

[5] S.K. Shivaji, Prabhudeva S., “Plagiarism
detection by using Karp-Rabin and string
matching algorithm together,” International
Journal of Computer Applications, vol. 116,
issue 23, pp. 1–5, 2015.

[6] S. Wahlstrom, “Evaluation of string searching
algorithms,” Proceedings of the IDT Mini-
Conference on Interesting Results in Computer
Science and Engineering, 2013, pp. 1-6.

[7] G. Behera, “Novel pattern matching algorithm
in genome sequence analysis,” International
Journal of Computer Science and Information
Technologies, vol. 5, issue 4, pp. 5450–5457,
2014.

[8] E. Silva de Moura, G. Navarro, N. Ziviani, R.
Baeza-Yates, “Fast and flexible word searching
on compressed text,” ACM Transactions on
Information Systems, vol. 18, issue 2, pp. 113-
139, 2000.

[9] S. Hasib, M. Motwani, A. Saxena, “Importance
of Aho-Corasick string matching algorithm in
real world applications,” International Journal
of Computer Science and Information
Technologies, vol. 4, issue 3, pp. 467-469,
2013.

[10] M. Alicherry, M. Muthuprasanna,V. Kumar,
“High speed pattern matching for network
IDS/IPS,” Proceedings of the 2006 IEEE
International Conference on Network
Protocols, 12-15 Nov. 2006, pp. 187-196.

[11] A. Corasick, The Life n Photo, 2008, [Online].
Available at: https://cskane.wordpress.com/
2008/07/23/aho-corasick-trie

[12] K. Namjoshi, G. Narlikar, “Robust and fast
pattern matching for intrusion detection,”
Proceedings of the 2010 IEEE International
Conference INFOCOM, 14-19 March 2010, pp.
1-10.

[13] P. Pandiselvam, T. Marimuthu, R. Lawrance,
“A comparative study on string matching
algorithms of biological sequences,” 2013,
[Online]. Available at: https://arxiv.org/ftp/
arxiv/papers/1401/1401.7416.pdf

[14] M. Kharbutli, M. Aldwairi, A. Mughrabi,
“Function and data parallelization of Wu-
Manber pattern matching for intrusion
detection systems,” Network Protocols and
Algorithms, vol. 4, no. 3, pp. 46-61, 2012.

[15] M. Dubiner’, Z. Galilt, E. Magen, “Faster tree
pattern matching,” Journal of the ACM, vol. 41,
issue 2, pp. 205-213, March 1994.

Ibrahim Obeidat, Mazen AlZubi / International Journal of Computing, 18(3) 2019, 278-284

 284

[16] S. Doria, G. Landau, “Construction of Aho
Corasick automaton in linear time for integer
alphabets,” 2012, [Online]. Available at:
http://cs.haifa.ac.il/~landau/gadi/shiri.pdf

[17] R. Bhukya, and D. V. L. N. Somayajulu,
“Exact multiple pattern matching algorithm
using DNA sequence and pattern pair,”
International Journal of Computer
Applications, vol. 17, issue 8, pp. 32-38, 2011.

[18] A. Ziad, M. Aqel, I. Emary, “Multiple skip
multiple pattern matching algorithm
(MSMPMA),” IAENG International Journal of
Computer Science, vol. 34, no. 2, pp. 14-20,
2007.

[19] H. Gharaee, S. Seifi, and N. Monsefan, “A
survey of pattern matching algorithm in
intrusion detection system,” Proceedings of the
7th IEEE International Symposium on
Telecommunications (IST), 2014, pp. 946-953.

[20] C.-H. Lin, et al., “Accelerating pattern
matching using a novel parallel algorithm on
GPUs,” IEEE Transactions on Computers,
vol. 62, issue 10, pp. 1906-1916, 2013.

[21] R. M. Karp, M. O. Rabin, “Efficient
randomized pattern-matching algorithms,” IBM
Journal of Research and Development, vol. 31,
issue 2, pp. 249-260, 1987.

[22] R. Ehtesham, M. El-Kharashi, F. Gebali, “A
fast string search algorithm for deep packet
classification,” Computer Communications,
vol. 27, issue 15, pp. 1524-1538, 2004.

[23] L. Colussi, “Correctness and efficiency of the
pattern matching algorithms,” Information and

Computation, vol. 95, issue 2, pp. 225-251,
Dec. 1991.

[24] M. Crochemore, A. Czumaj, L. Gasieniec, S.
Jarominek, T. Lecroq, W. Plandowski, W.
Rytter, “Speeding up two string matching
algorithms,” Algorithmica, vol. 12, no. 4-5, pp.
247-267, 1994.

Ibrahim M. Obeidat, Ph.D.
in Computer science,

Associate Professor in of
computer science at the

Computer science
department, the Hashemite
University. Current research

interests include Computer
Networks, Cyber Security.

Mazen I. Alzoubi, Master

Degree of Cyber Security at
Zayed University. Current

interests include: Computer
Networks, Cyber Security.

