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Abstract: In this article, heuristic methods of hill climbing for cryptographic 
Boolean functions satisfying the required properties of balance, nonlinearity, 
autocorrelation, and other stability indicators are considered. A technique for 
estimating the computational efficiency of gradient search methods, based on the 
construction of selective (empirical) distribution functions characterizing the 
probability of the formation of Boolean functions with indices of stability not 
lower than required, is proposed. As an indicator of computational efficiency, an 
average number of attempts is proposed to be performed using a heuristic 
method to form a cryptographic Boolean function with the required properties. 
Comparative assessments of the effectiveness of the heuristic methods are 
considered. The results of investigations of the cryptographic properties of the 
formed Boolean functions in comparison with the best known assessments are 
given. On the basis of the conducted research, it can be concluded that the 
functions constructed in accordance with the developed method have high 
persistence indexes and exceed the known functions by these indicators. 

Copyright © Research Institute for Intelligent Computer Systems, 2019.  
All rights reserved. 

 
 

1. INTRODUCTION  

An important element of most modern symmetric 
ciphers are non-linear replacement blocks [1-7], 
which are described with the help of Boolean or, in 
general, vector cryptographic functions [6]. 
Indicators of the cryptographic strength of such 
functions (balance, nonlinearity, autocorrelation, 
etc.) directly affect the efficiency of symmetric 
ciphers, their resistance to most modern 
cryptanalytical attacks [5-15]. In particular, the 
algebraic properties of S-blocks of modern block 
ciphers are investigated in [5-7] and their influence 
on sustainability to algebraic cryptanalysis is shown. 
In [8-11], combinatorial properties of non-linear 
knots in the context of the security evaluation of 
various encryption modes and key schedules were 

investigated. In [12, 13], the influence of S-blocks 
on avalanche effects, differential and linear 
properties of block ciphers is investigated. The 
papers [14, 15] are dedicated to the study of the 
properties of nonlinear replacement nodes in modern 
stream ciphers in comparison with the "Strumok" 
algorithm proposed as a new standard of stream 
encryption in Ukraine [16]. 

Methods for constructing S-blocks are 
investigated by many authors, for example, in [17-
20]. However, the most developed and widespread is 
the mathematical apparatus of cryptographic 
Boolean functions [21-28]. In particular, a new 
recursive construction of a Boolean function with 
maximum algebraic immunity is presented in [21]; 
in [22, 23] genetic algorithms for constructing 
Boolean functions with the required cryptographic 
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properties are examined; in [24] the method of 
simulation of annealing is investigated; evolutionary 
methods are studied in [25, 26]; papers [27, 28] are 
dedicated to the heuristic methods of gradient 
search. 

The purpose of this paper is to continue studies 
of the method of gradient descent, first proposed in 
[28], an assessment of its computational complexity 
in comparison with the closest analog in [27]. For 
this purpose, the necessary terms and definitions in 
Section 2 are introduced; the heuristic methods 
studied in [27, 28] are summarized in Section 3 and 
the calculated data for the required number of 
operations for the realization of gradient descent 
(Table I) is provided. Section 4 evaluates the 
properties of the gradient-lift method for the 
formation of high non-linear correlation-immune 
cryptographic Boolean functions. In section 5 a 
methodology for assessing the effectiveness of 
heuristic methods is proposed and the results of 
comparative studies are represented. In particular, it 
has been shown that the method of gradient descent 
in [28] for a significantly smaller number of 
iterations (in dozens of times) makes it possible to 
form cryptographic Boolean functions with the 
required indices of nonlinearity and autocorrelation. 
Section 6 presents the results of investigations of the 
cryptographic properties of the formed Boolean 
functions and compares them with the best known 
assessments. In conclusion, the obtained results are 
summarized and directions for further research are 
formulated briefly. 

 
2. INDICES OF STABILITY 

OF CRYPTOGRAPHIC BOOLEAN 
FUNCTIONS 

The basic concepts and definitions of the 
mathematical apparatus of Boolean algebra used in 
evaluating the effectiveness of non-linear nodes to 
replace symmetric ciphers were introduced in [21-
28]. 

The Boolean function f of n variables is the 
function [21-28], variables is the function that maps 
from the field GF(2n) of all binary vectors x = (x1, 
…, xn) of length n to the field GF(2). Usually 
Boolean functions are represented in algebraic 
normal form (ANF) and are considered as the sum of 
the products of the component coordinates. 

The algebraic degree deg (f) is the degree of the 
longest summand of a function represented in an 
algebraic normal form. Algebraic degree reflects the 
resistance to analytical attacks, designed to reduce 
this function to cryptographically weak (linear). 

The sequence of the function f is (1,-1) – a 

sequence, defined as ( 0
( )

( 1)
f  , 1

( )
( 1)

f  , …, 

12
( )

( 1) nf   ) [21-28]. 

The truth table of a function f is (0,1) - a 

sequence, defined as (f(0), f(1), 
2 1

( )nf   ) [21-28].  

The sequence of the function f is balanced if its 
(0,1) -sequence ((1, -1) - sequence) contains the 
same number of zeros and ones (ones and minus 
ones). The function f is balanced if its sequence is 
balanced [21-28]. 

The balance of the function is an indicator of 
stability, reflecting the weakness of the output 
sequence to statistical attacks. 

An affine function f is a function of the form f = 
a1x1  …  anxn  с, где aj, с  GF(2), j = 1, 2,..., 
п. Function f is called linear, if с = 0 [21-28]. 

The Hamming weight of the vector  ((0,1)- 
sequence ), denoted by W(), is the number of 
ones in the vector (sequence) [21-28]. 

The Hamming distance d (f,g) between the 
sequences of two functions f and g is the number of 
positions in which the sequences of these functions 
are different [21-28]. 

The nonlinearity of the NS transformation is the 
minimum Hamming distance between the output 
sequence S and all output sequences of affine 
functions over a certain field [21-28]: NS = min 
{d(S,)}, where  - is the set of affine functions. 

The nonlinearity of the function Nf is the minimal 
Hamming distance Nf between the function f and all 
affine functions over GF (2n) [21-28]: where  is the 
set of affine functions. 

For an arbitrary function f, the nonlinearity of Nf 
over GF (2n) can reach [21-28]: Nf   2n – 1 – 2n/2 – 1. 
For a balanced function f over GF (2n) (n  3), the 
nonlinearity of Nf can reach [21-28]: 
 

1 /2 1

1 /2 1

, 2 ,2 2 2

, 2 1,2 2

n n

f n n

n k
N

n k

 

 

  
 

      

, 

 

where x      – is the maximal even integer less 

than or equal to х. 
Non-linearity of the function is an indicator 

reflecting the stability of functions to correlative 
(linear) attacks. 

The function f has a correlation immunity of 
order k if the output sequence of the function y  Y 
is statistically independent of any subset of k input 
coordinates [21-28]: {x1, …, xk}  P(y  Y / 
{x1, …, xk}  Х) =  P(y  Y). 

Equivalent definition of correlation immunity in 
terms of the Walsh transform [21-28]: the function f 
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over the field GF(2n) has correlation immunity of 
order k, CI(k) if its Walsh transform satisfies the 
equality F() = 0 for all   Vn such as 1  W() 
k:   Vn, F() = 0, CI (f) = k. 

The Walsh transformation F() of the function f 
over the field GF(2n) is defined as the real-valued 
function [21-28]: 

 

F() = 2-n ( ) ,
( 1)

f x x

x


 , 

 
where   Vn,  f(х), ,x  N (,x -is the scalar 
product w1x1  …  wnxn) . 

Correlation-immune function of the k-th order is 
a function possessing correlation immunity of the 
order of k. Balanced correlation-immune functions 
are called elastic functions. 

Function f over the field GF (2n) satisfies [21-
28]: 

- the propagation criterion relative to the vector 
, PC(), if function f(х)  f(х  ) is balanced, х 
 Vn, where х = (x1, x2, …, xn):  

 

P(f(х) = f(х  )) = 
1

2
; 

 
- the propagation criterion of the k-th order, 

КР(k), if the propagation criterion with respect to all 
vectors is satisfied   Vn under 1  W() k: 

 

P(f(х) = f(х  )) = 
1

2
 ,  : 1  W()  k; 

 
- strict avalanche criterion, SAC, if f satisfies the 

propagation criterion of degree 1: 

P(f(х) = f(х  )) = 
1

2
,   : W() = 1. 

 
The degree of correlation immunity/propagation 

criterion reflects the stability of the functions to 
correlation attacks, designed to find the linear 
properties of this function [29-40]. 

Function f over GF (2n) is called a bent function 
[21-28], if 

 

2-n/2 
( ) , 1( 1)

n

f x x

x V





   

 
for all nV  . 

The sequence of a bent function is called a bent 
sequence. For bent functions, the following 
assertions are valid [21-28]: 

 2, 2
n    for any affine sequence ℓ of length 

2n; 

 f(x)  f(x  α) is balanced  α  Vn, W(α)  0; 

 f(x)  , x  takes the value of one 2n-1  2n/2 – 1 

times  α  Vn; 
 f(x)  h(x), where h(x) – affine function, is also a 

bent function. 

Autocorrelation function �̂(�) for 0... 12
ns   is 

defined as 
 

 

. 

 

The value of autocorrelation reflects the stability 
of the functions to the class of analytic attacks, 
designed to find a correlation between the fragments 
of the function [29-40]. 

The function f satisfies the propagation 
characteristic m if: 

 

(1 ≤ |�| ≤ �) ⇒ |�̂(�)| = 0. 
 

Similarly, the autocorrelation AC (f) of the 
function f is defined as the module of the largest 
value of �̂(�): 
 

 

. 

 

Autocorrelation �̂(�) ensures the leakage of the 
information flow from the input to the output of the 
function [29-40]. 

 
3 HEURISTIC METHODS OF HILL 

CLIMBING 

Heuristic methods of gradient search are 
investigated in this article. In particular, the method 
of gradient lift of W. Millan, A. Clark, E. Dawson, 
1997 [27] and the method of gradient descent 
developed on its basis [28]. 

 
3.1 HEURISTIC METHOD OF GRADIENT 
LIFTING 

The essence of the method is to increase the 
nonlinearity of an arbitrary Boolean function by 
complementing some position in the truth table of 
the original function. Each position of the truth table 
corresponds to unique input data. The method allows 
to create a complete list of such input data of the 
function, that the complementation of any output 
position corresponding to this input in the truth table 
will increase the nonlinearity of this function. The 
list of such positions in the truth table is denoted as 1 
- Improvement Set of the function f (x), or 1 - ISf 
[27]. 
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Definition 1 [27]. g(x) = f(x)  1 for х = ха and 
g(x) = f(x) for all other х. If Ng > Nf, then ха  1 – ISf. 

In [27] a fast systematic method for determining 
the set 1 - ISf of a given Boolean function is 
presented using its truth table and Walsh-Hadamard 
transforms. To find the set 1 - ISf of a given Boolean 
function, it is first necessary to determine the values 
of Walsh-Hadamard transform coefficients that 
correspond to values close to the absolute value of 
the maximum coefficient, WHmax. 

Definition 2. f(x) is a Boolean function with a 
Walsh-Hadamard transform F (w), where WHmax 
denotes the maximum absolute value of F(w). One 
or more linear functions Lw(x) having a minimal 
distance to the function f(x), and for the data w, the 
equality |F(w)| = WHmax will exist. 

The following set is defined as: 
 

1W   = {w: F(w) = WHmax} and 

1W   = {w: F(w) = - WHmax}. 

 

Also sets w for which the values of WHT are 
close to the maximum are defined: 

 

2W   = {w: F(w) = WHmax - 2}, 

2W   = {w: F(w) = - (WHmax - 2)}, 

3W   = {w: F(w) = WHmax - 4}  

and 3W   = {w: F(w) = - (WHmax -4)}. 

 

When the truth table changes exactly in one 
place, all WHT values change to +2 or -2. It follows 
that to increase the nonlinearity all WHT values in 

the set 1W  must be changed to -2, all WHT values in 

the set 1W  must be changed to 2 and also all WHT 

values in the set 2W   must be changed to -2, all 

WHT values in the set 2W   must be changed to 2. If 

the first two conditions are obvious, then the 
following two conditions are required in order to 
have all other values of |F(w)| smaller than WHmax. 
These conditions can be presented in the form of 
simple tests. 

Theorem 1 [27]. The Boolean function f(x) with 
WHТ F(w) is given, and sets  are defined 

 

W   = 1W   2W    

 

and   
 

W   = 1W   2W  . 

Then for some input x an element from the 
Improvement Set exists and the following two 
conditions are met: f(x) = Lw(x)  for all w  W+, and 
f(x) ≠ Lw(x) for all w  W-. 

The criterion of gradient search is the 
maximization of the Hamming distance between the 
generated sequence and the sequences of linear 
functions. After updating the algebraic form of the 
Boolean function, similar operations are performed: 
the Walsh-Hadamard WFT transform is performed 
and the maximum values of the transformation 
coefficients are found; A set of Improvement Set is 
formed; there are elements of a sequence of 
functions that coincide with the elements of the 
sequence of the nearest linear form; inverting the 
matched elements and increasing the nonlinearity of 
the function, by "distance" from the nearest linear 
function. Next iterations similar to those discussed 
above are performed. 

The conducted researches have shown that the 
considered method of gradient lifting is 
computationally expensive and, with a large number 
of arguments of the Boolean function, requires a 
significant number of repeated iterations. To reduce 
computational complexity, a gradient descent 
method with bent sequences is proposed in [28] as 
an input data. 

 

3.2 HEURISTIC METHOD OF GRADIENT 
DESCENT 

The proposed method of cryptographic Boolean 
functions constructing is a further development of 
the heuristic method of gradient lifting. This method 
is based on using the properties of nonlinear 
sequences. It differs from the well-known heuristic 
methods in the iterative procedure of complementing 
the positions of bent sequences for the gradient 
search for balanced Boolean functions according to 
the criterion of maximizing the Hamming distance 
between the generated sequences and the sequences 
of all linear functions, which makes it possible to 
search the Boolean functions with the required 
cryptographic properties with less computational 
efforts.  

The main idea of the gradient descent method is 
the effective lowering of the nonlinearity of the 
given bent sequences for each of the 2n/2–1 obligatory 
complementations. Table 1 presents the calculated 
data for vector spaces V4 - V12. Column 2 shows the 
non-linearity (Walsh transform value) of the bent 
sequences considered as an input, column 3 shows 
the maximum achievable non-linearity (the 
maximum value of the Walsh transform) of the 
functions taken as an output, and column 4 indicates 
the number of bits that need to be changed in the 
bent sequences to obtain the desired result. 
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Table 1. Calculation Values for Vector Spaces V4 - V12 

 

The 
maximum 
achievable 

performance 
for bent 

functions 

Maximum 
achievable 

performance for 
balanced functions 
/ Best known result 

The 
number 

of 
positions 

in the 
bent 

sequence 
that need 

to be 
changed 

Nf F(w) Nf F(w) 

V4 6 4 4/4 8/8 
2 

positions 

V6 28 8 26/26 12/12 
4 

positions 

V8 120 16 118/116 20/24 
8 

positions 

V10 496 32 494/492 36/40 
16 

positions 

V12 2016 64 2014/2010 68/76 
32 

positions 

 
Fig. 1 shows the possible loss of nonlinearity in 

the complementation of the required number of 
positions of the bent sequence. To achieve the given 
upper bound of the nonlinearity, it is necessary to 
determine from the total number of positions x of the 
truth table to be complemented, the number of 
positions y the change of which entails a change of 
WH to +2, and the number of positions z the change 
of which entails a change of WH by -2, x = y + z. 
Table 2 presents the calculated data showing the 
necessary number of required complementations of 
the bent sequence for a given vector space in 
accordance with Theorem 2.1 of [27]. 

 

  

Figure 1 – Possible loss of nonlinearity in the case of 
complementation 

 
After calculating the necessary number of 

complementations of the bent sequence, the Walsh-
Hadamard transformation WH is performed in the 
first step of the heuristic search and the maximum 
Hamming distance to one or more sequences of 

linear functions Li(x) is determined. This operation 
corresponds to the selection of the zero value of 
Walsh-Hadamard transform coefficients WH, after 
which a set of linear functions constituting the 
Improvement Set is formed. Further, the elements of 
the bent function sequence are inverted, which 
coincide with the elements of sequences of linear 
functions from the Improvement Set. As a result, the 
imbalance of the function is reduced, but the non-
linearity also decreases, i.e. the sequence of the 
function is not as far from the sequences of the 
linear functions Li(x). At the next iteration, all 
operations are repeated. Thus, as a criterion for 
gradient search for cryptographic functions, the 
proposed method is the minimization of the minimal 
Hamming distance of the generated sequence and 
sequences of linear functions. 

Table 2. Estimates of the Necessary Number of Bent-
Sequential Complications 

 The 
number of 
positions 

in the 
bent 

sequence 
that need 

to be 
changed, 

NeedSteps 

The value of 
nonlinearity must 

be changed 

 
Required for this 
change, n- and n+ 

Nf, 
from _ to 

_ 

F(w), 
from _ to 

_ 

V4 2 64 48 
n- = 2 (changes 
from F(w) = +2) 

V6 4 2826 812 

n- = 3 (changes 
from F(w) = +2) 
n+ = 1 (changes 
from F(w) = -2) 

V8 8 120116 1624 

n- = 6 (changes 
from F(w)=+2) 
n+ = 2 (changes 
from F(w)=-2) 

V10 16 496492 3240 

n- = 10 (changes 
from F(w)=+2) 
n+ = 6 (changes 
from F(w)=-2) 

V12 32 
201620

10 
6476 

n- = 19 (changes 
from F(w)=+2) 
n+ = 13 (changes 
from F(w)=-2) 

 
In general, the proposed method consists of three 

main stages. 
At the first stage, gradient descent procedures are 

used, which allow to obtain a highly nonlinear 
sequence. 

At the second stage, the renewal procedures of 
algebraic normal form of the function on the output 
sequence are used. 

At the third stage, depending on the practical 
application environment, the modification procedure 

4

24

112

470

1984

4

26

118

494

2014

1

10

100

1000

10000

4 6 8 10 12 Vn

Nf



I. Moskovchenko, A. Kuznetsov, S. Kavun et al. / International Journal of Computing, 18(3) 2019, 265-277 

 

 270

of the algebraic normal form of the function f(x) is 
used. This allows us to maintain the basic indicators 
of stability (balance and nonlinearity) by applying 
affine transformations, to improve either the 
dynamic properties of the nonlinear transformation 
or the correlation characteristics. 

So, the developed method allows us to form 
balanced cryptographic functions with high 
nonlinearity. In this case, as shown in Fig. 1, the 
values of nonlinearity lie in a narrow range of values 
that depends on the dimension of the vector space. 

It should be noted that for modern in-line ciphers, 
an important indicator of effectiveness is also the 
correlation immunity that characterizes the 
resistance of the encryption scheme to correlation 
attacks [41-44]. We will make the evaluations of 
nonlinearity and correlation immunity of Boolean 
functions that can be synthesized by the developed 
method. 

 

4 EVALUATIONS OF NONLINEARITY 
AND CORRELATION IMMUNITY OF THE 

FORMED FUNCTIONS 

For cryptographic Boolean functions, the 
relationship between the attainable degree of 
correlation immunity m and its nonlinearity Nf [30] 
is known: 

 
Nf = 2n-1 – 2m+1,  (1) 

 

it is true for 

 

m  n/2 – 2.   (2) 

 
As it can be seen from (1), the degree increase in 

correlation immunity m leads to the decrease in 
nonlinearity, and vice versa. Therefore, developers 
of cryptographic protection facilities, depending on 
the conditions of practical use, have to find a 
compromise between the required nonlinearity and 
the desired degree of correlation immunity. The 
advantage of the developed method is the ability to 
build functions with different values of 
cryptographic indicators. 

So, for example, in Table 3, the achievable 
degree of correlation immunity CImax(k) with 
indication of the corresponding non-linearity Nf min is 
shown according to (1) and (2). In fact, the data in 
the table correspond to the lower limit of 
nonlinearity, guarantee obtained using the developed 
method. Table 4 shows the achievable degree of 
correlation immunity CImax(k) with indication of the 
maximum possible nonlinearity for the balanced 
functions of Nf max. That is, the upper limit of the 

functions nonlinearity using the developed method is 
given here. In Fig. 2 for clarity the table data is 
depicted by means of a graph.  

Table 3. The lower limit of nonlinearity at given 
correlation immunity 

 V4 V6 V8 V10 V12 

CImax(k) 1 2 3 4 5 
Nf min 4 24 112 480 1984 

Table 4. The upper limit of nonlinearity at given 
correlation immunity 

 V4 V6 V8 V10 V12 

CImax(k) 1 1 2 3 4 
Nf max 4 26 116 492 2010 

 

Figure 2 –Boundary indicators of correlation 
immunity 

 
As the mentioned data analysis show, the 

application of the developed method allows to form 
the Boolean functions, which, in addition to high 
nonlinearity values can be potentially correlation-
immune functions. When used in stream ciphers, 
they will be highly resistant to various cryptographic 
attacks. Thus, for example, the application of the 
developed method over the V8 space allows us to 
form functions with the nonlinearity index Nf min = 
112 and the degree of correlation immunity CImax(3), 
which is the best result known up today. 

It should be noted that the probabilistic search by 
heuristic methods is described by some random 
process, the specific implementation of which is a 
random variable - the values of the indices of the 
stability of the found function (see Section II). 

The corresponding probabilities of the occurrence 
of the desired random events indicate the average 
number of attempts to succeed - the construction of a 
cryptographic Boolean function with the required 
properties. Thus, to evaluate the computational 
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effectiveness of heuristic methods, i.e. it is necessary 
to assess the probability distribution of the formation 
of Boolean functions with different cryptographic 
indices. 

 

5 METHODOLOGY OF ESTIMATION OF 
THE EFFICIENCY AND RESULTS OF 

THE RESEARCH  

The proposed methodology uses the average 
number of attempts as an index of computational 
efficiency that will need to be performed using the 
heuristic method to generate a cryptographic 
function with the required indicators of stability. 

In accordance with the main provisions of the 
theory of probability and mathematical statistics, the 
unknown distribution function of the random 
variable under consideration is determined due to the 
results of observations from the sample [29]. A 
sample of volume L for a random variable A is a 
sequence X1, X2, …, X L of L independent 
observations of this quantity, that is, a set of values 
taken by L independent random variables А1, А2, …, 
А L with the same distribution law FA(x) as the 
considered quantity A. In this case, the sample X1, 
X2, …, X L is taken from the general aggregate of A, 
and the distribution law of the general population is 
understood as the distribution law of a random 
variable A. The values X1, X2, …, X L are called 
sample values [29].   

The following notation: iSI - a random variable 

whose values represent the outcomes of a heuristic 
search is introduced - a numerical expression of the 
i-th indicator of the strength of a cryptographic 
Boolean function; X1, X2, …, XL is the sample of the 

volume L of the random variable SIi; ( )
iSIF x is the 

distribution function of the random variable SIi. 
The values of the theoretical distribution 

functions ( )
iSIF x that are the probabilities of events 

should be estimated{ }iSI x , using the frequencies 

of these events from the sample of the volume L. vx 
denotes the number of sample values less than x. 

Then the frequencies xv

L
 of sampling to the left of 

the point x in this sample are the frequencies of 

events{ }iSI x . These frequencies are functions of 

x and are, respectively, empirical distribution 

functions )* (
iSIF x of random variables iSI

obtained from this sample: (* )
i

x
SIF

L

v
x  .  The 

frequency of the event in L independent experiments 
is an estimate for the probability of this event, i.e.  

 

*( ) ( )
i iSI S

x
I

v

L
F x F x  . 

 

Using the distribution function ( )
iSIF x , the 

indicator of computational efficiency of heuristic 

methods as the average number avK of attempts of 

probabilistic formation of a Boolean function with 
the required properties can be introduced as:  

 

1 1

( ) ( )*
i iS

a

I S

v

I

K
F x F x

  . 

 
If accept the assumption of statistical 

independence m  of random variables iSI , 

1,..,i m , then the probability of the formation of a 

cryptographic function with exponents 

, 1,..,iSI x i m   will be determined by the 

probability of a joint event written through the 
product of the probabilities of independent events: 
 

1

( )
i

m

SI
i

F x

 . 

 
The average number of attempts at probabilistic 

formation of a cryptographic function 

, 1,..,iSI x i m   is calculated from the expression: 

 

1 1

*

1 1

( ) ( )
i i

m m

S

av

SI I
i i

K

F x F x
 

 

 
. 

 
Two main indicators are of greatest interest for 

cryptography: nonlinearity of Nf and autocorrelation 
of AC [21-28], and it is necessary to maximize 
nonlinearity and minimize auto-correlation. To 
estimate the computational efficiency for these two 
stability indicators, the last expression is rewritten in 
the form: 

 

 

 

1

1 ( ) ( )

1
,

1 * ( ) * ( )

f

f

av

N AC

N AC

K
F x F x

F x F x

 
 


 

 

 

where: ( )
fNF x  and * ( )

fNF x  - theoretical and 

empirical probabilities of an event { }fN x ; 
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( )АСF x  и * ( )АСF x  - theoretical and empirical 

probabilities of an event { }АС x ; 

Using the indicator avK , comparative studies of 

the computational effectiveness of heuristic methods 
of probabilistic formation of cryptographic Boolean 
functions will be performed. As an object of 
investigation, the method of random generation [21-
28], the method of gradient lifting and the heuristic 
method of gradient descent proposed in [27] will be 
used [28]. 

Fig. 2 shows histograms of frequencies of events 

{ }fN x  for balanced Boolean functions 

constructed above V8, sample size L =10000. As it 
can be seen from the given data, the heuristic 
method of gradient descent (IKK) allows for 
representing Boolean functions with indicators of 

nonlinearity 114fN   with probability 1, 

116fN   with probability 0.5. The next method of 

gradient lifting (MSD) for computational efficiency 
allows one to generate cryptographic functions with 

nonlinearity indicators 112fN   with probability 

1, 114fN  with probability 0.5 and 116fN   

with probability 0.1. The method of random 
generation (RG) is generally ineffective, the most 
probable value of the nonlinearity is in the range 
80..104. 

Fig. 3 shows the frequencies of events { }AC x  

for balanced Boolean functions constructed over V8, 
the sample size L =10000. 

As the analysis shows, the heuristic method of 
gradient descent is highly competitive with the 
closest analogue - the method of gradient search. It 
allows for representing Boolean functions with a low 
autocorrelation index. 

Fig. 4 shows the dependencies avK for:  

 the method of random generation with AC = 80 
(RG, AC = 80);  

 method of random generation with AC = 120 
(RG, AC = 120);  

 method of gradient lifting with AC = 24 (MCD, 
AC = 24);  

 method of gradient lifting with AC = 32 (MCD, 
AC = 32);  

 gradient descent method with AC = 24 (IKK, AC 
= 24);  

 method of gradient descent with AC = 32 (IKK, 
AC = 24). 
 

 

Figure 2 – Histograms of event frequencies{ }fN x , 

sample size L = 10000 

 

Figure 3 – Histograms of frequencies of events

{ }AC x , sample size L = 10000 

 

Figure 4 – Dependencies of the average number avK   

 
Analysis of the dependencies provided in Fig. 4 

shows that the gradient descent method allows for 
representing Boolean functions with high 
cryptographic indices (nonlinearity and 
autocorrelation) for fewer attempts (on average). For 
example, the formation of a cryptographic function 
with AC = 24 and N = 116 for the random 
generation method is computationally unattainable 
due to the extremely high average number of 
attempts. For the same parameters, the gradient 
lifting method will require an average of about 8000 
attempts. The method of gradient descent with the 
same parameters will require an average of 4 
attempts, i.e. the average number of attempts has 
decreased 2000 times. When requirements to 
cryptographic properties of AC = 24 and N = 114, 
the method of gradient lifting will require an average 
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of about 15 attempts, and the method of gradient 
descent – about 3. 

 

6 CRYPTOGRAPHIC PROPERTIES OF 
FORMED BOOLEAN FUNCTIONS  

We will conduct a comparative study of the 
properties of cryptographic Boolean functions with 
the best known analogues: the genetic algorithm 
[31], the NLT- and ACT-algorithms [32], which 
belong to the class of heuristic methods. 

Table 5 presents the results of a comparative 
assessment of nonlinearity functions obtained using 
the developed method of gradient descent, the 
prototype method (heuristic method of gradient 
lifting) and the best known heuristic methods (all 
data except the last line are taken from [31]). 

These data indicate that among the heuristic 
methods, the developed method allows for achieving 
the highest nonlinearity. High nonlinearity indicates 
a high degree of data mixing, which determines the 
resistance of crypto-transformations. For the first 
time, we managed to construct functions with the 
highest known nonlinearity among the heuristic 
methods: Nf = 488 for V10 and Nf = 2002 for V12. 

Table 5. Comparative assessment of nonlinearity 
functions  

 V6 V8 V10 V12 
Theoretical nonlinearity 26 118 494 2014 

Method of random 
generation (RG) [31] 

- 112 472 1954 

Hill Climbing Method [27] - 114 476 1960 
Genetic Algorithm [31] 26 116 484 1976 

NLT [32] 26 116 486 1992 
ACT [32] 26 116 484 1986 

Developed method [28] 26 116 488 2002 

Table 6 shows the comparative characteristics of 
the best known methods that allow for representing 
functions with low autocorrelation values [31]. As it 
can be seen in this table, the developed method 
allows formation of functions with low 
autocorrelation values. Over V8, the NLT and ACT 
methods allow for representing functions with AC = 
16, but the nonlinearity is equal to 112. The 
developed method allows formation of functions 
with nonlinearity 116. Over all other vector spaces, 
the obtained values are comparable to the results for 
other methods. 

Table 6. Comparative assessment of functions 
autocorrelation 

 V6 V8 V10 V12 
Zhang Zheng [33, 34] 16 24 48 96 

Maitra [35, 36] 16 24 40 80 
NLT [32] 16 16 64 144 
ACT [32] 16 16 56 128 

Developed method [28] 16 24 40 72 

Figs. 5-9 show the spectral properties of Boolean 
functions formed in various ways. In parentheses are 
the indicators: (n, deg(f), Nf, AC). This data shows 
that cryptographic Boolean functions constructed in 
accordance with the developed method [28] have the 
maximum attainable algebraic degree, high 
nonlinearity, and low autocorrelation. By the 
majority of resistance indicators, the formed 
functions are equal to known methods. 

 

Figure 5 – Bent function [31-40]: (8, 4, 120, 0) 

 

Figure 6 – Developed method [28]: (8, 7, 116, 24) 

 

Figure 7 – Hill Climbing Method [28]: (8, 6, 116, 
24) 

 

Figure 8 –Maitra-Pasalic Method [37]: (8, 6, 116, 
80) 

 

Figure 9 –Seberry-Zhang Method [38-40]: (8, 4, 
112, 128) 
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7. CONCLUSIONS 

Studies of the computational efficiency of 
heuristic methods that were conducted have shown 
that the methods of gradient search for an acceptable 
number of iterations allow for representing 
cryptographic Boolean functions with high 
nonlinearity and low autocorrelation. Formed 
functions are not inferior to the best known results 
for the rest of the cryptographic indicators.  

The gradient descent method, first proposed by 
us in [28], is developed in this paper. In particular, 
we obtained estimates of the computational 
complexity of this method, and also carried out a 
comparison with the closest prototype, Hill 
Climbing Method. The gradient descent method 
proved to be more effective than the Hill Climbing 
Method in [27]. In particular, the results of 
experimental studies show that the method of 
gradient descent requires ten times smaller number 
of iterations, i.e. it is more effective in the 
computational aspect.  

We have compared the cryptographic properties 
of Boolean functions formed by various methods. 
Comparisons were made with the following 
evolutionary computational approaches: the Hill 
Climbing method, the Simulated Annealing method, 
the Genetic Algorithm. Comparative studies of the 
cryptographic properties of Boolean functions have 
shown that the functions formed by the proposed 
computational method have high indicators: the 
nonlinearity index approaches the upper theoretical 
limit; the autocorrelation index is one of the lowest 
in comparison with other methods of synthesis; with 
equal indices of nonlinearity, the formed functions 
have the maximum attainable algebraic degree; all 
known methods of synthesis are inferior in spectral 
characteristics of functions. Thus, on the basis of the 
conducted studies, it can be concluded that the 
functions constructed in accordance with the 
developed method have high persistence indexes and 
exceed the known functions by these indicators. 

 
8 PROSPECTS FOR FURTHER 

RESEARCH 

A promising research direction is the 
development of a probabilistic model for the 
synthesis of non-linear replacement nodes with high 
cryptographic properties, experimental studies and 
substantiation of practical recommendations in order 
to implement the obtained results.  

This research might be useful for the 
improvement of various methods of information 
security, as well as other practical use [45-52]. In 
particular, the obtained results can be used to build 
non-linear replacement nodes for modern block 
symmetric ciphers, including the formation of s-
blocks of the Ukrainian national block encryption 
standard Kalyna (DSTU 7624: 2014) [3, 53], the 
cryptographic hashing algorithm Kupyna [54-56], as 

well as the recently approved stream encryption 
standard Strumok [16].  

The estimates and calculated values given in this 
paper (see Tables 5 and 6) clearly confirm the 
conclusion that the developed gradient descent 
method is not inferior in basic cryptographic 
indicators (nonlinearity and autocorrelation) to the 
best known results. In addition, as it is seen in the 
diagrams (see Figs. 2, 3, 4) the developed method is 
significantly (several times) more efficient 
computationally. Thus, the obtained results have the 
great practical importance for the development of 
methods and computational algorithms for the 
formation of nonlinear nodes of modern symmetric 
cryptoalgorithms.  

The proposed method for estimating the 
computational effectiveness of heuristic methods can 
be used for other methods, including using an 
extended set of indices of stability. This direction is 
an area of our further research. 
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