Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Christian Russ, and Markus Zanker /
Computing, Vol. 1, Issue 2 (2002), 101-107

MULTI-SITE PRODUCT CONFIGURATION
OF TELECOMMUNICATION SWITCHES

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Christian Russ,
and Markus Zanker

Computer Science & Manufacturing Research Group
Universitat Klagenfurt

Universitatsstrarde 65, 9020 Klagenfurt, Austria

{felfernig, friedrich, jannach, russ, zanker}@ifit.uni-klu.ac.at

ABSTRACT. Knowledge-based product configurators support their users in tailoring
configurable products according to their specific demands and these systems have been success-
fully applied in many industrial sectors over the last decades. However, within today’s networked
economy, the complex solutions offered to the customers are in many cases assembled from
configurable sub-products themselves. Within this paper we describe a business case where due to
organisational and con-fidentiality reasons a single-configurator approach is not applicable and
several configurators along the supply chain must cooperate in finding correct product configu-
rations and in presenting them to an online customer. We present an algorithm based on Con-
straint Satisfaction that takes the specific characteristics of the problem domain into account and

compare our approach to other work in the field of Distributed Problem Solving.
The implementation framework for distributed configuration which is currently developed in
the EU-funded project CAWICOMS' is discussed in the final sections.

KEY WORDS: Product Configuration, Distributed Artificial Intelligence, eCommerce.

1. INTRODUCTION

Mass-customization can be defined as a busi-
ness strategy where customers can tailor a prod-
uct or service according to their specific needs,
i.e., typically the customer can decide which fea-
tures and options should be included in his/her con-
figuration and set parameters for the personalized
variant of the product. Typically, there are several
technical or organisational restrictions on legal com-
binations of the parameters and options such that
intelligent support is required to check the consis-
tency of user choices and compute the set of com-
ponents that have to be included in the solution.
Due to the complexity of the task, this support has
to be provided by intelligent product configuration
systems (configurators).

Over the last decades, product configuration has
been a successful application field of Al technol-
ogy [1] and is applied both in simple sales-configu-
ration scenarios as well as for the configuration of
complex technical systems like telecommunication
switches [2]. As a result, powerful tools (e.g., [LOG
Configurator [3]) are available on the market,

whereby the most successful systems rely on Con-
straint Satisfaction as underlying reasoning mecha-
nism.

However, two related aspects of nowadays’ digi-
tal economy pose new requirements on the soft-
ware systems that support the (online-) selling and
the configuration processes: Complex products and
services are not provisioned or manufactured by
one single company but are assembled from com-
ponents stemming from highly specialized provid-
ers which altogether constitute a supply chain. On
the other hand, from the customer’s perspective
there has to be one single point of interaction, where
s’he can rather purchase complete solutions from
an integrator/reseller than individual products.

Our application domain is from the area of tele-
communication solutions for small and medium-sized
companies that include e.g., advanced in-house te-
lephony, voice messaging, billing services as well
as end-user telephone devices. Such an advanced
solution (which is sold by one of our project part-
ners) consists - besides a main switch — of several
additional hardware and software components, e.g.,
network routers for IP-based services, that are

! Customer-Adaptive Web Interface for the Configuration of products and services with Multiple Suppliers.
The work takes place with the financial support of the IST Programme of the European Union under contract IST-1999-

10688. (See http://www.cawicoms.org)

101

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Christian Russ, and Markus Zanker /
Computing, Vol. 1, Issue 2 (2002), 101-107

LI [=
7

[]

=

1010000

s

a protocol for interaction to solve the
overall problem.
In addition, in our application do-

L5

PC

End user devices

—
T2 ¢

main some special characteristics of
the interaction between the involved

Printer

Main Switch

Additional Hardware Additional Software

Figure 1 Telecommunication switch with add-ons

provided by extemal suppliers or other organizational
units (Figure 1). The main challenge in that setting is
that both the main switch as well as the subcompo-
nents may be configurable and there are interde-
pendencies between these components; due to con-
fidentiality reasons or due to the fact that the knowl-
edge onthe configurable product itselfis distributed
and maintained at different sites, it is not possible to
integrate this knowledge into one centralized knowl-
edge base. Therefore, the configuration of the com-
plete solution must take place in a decentralized and
distributed manner. Finally, already existing legacy
configuration systems for the add-on products have
to be integrated in order to support the joint configu-
ration ofthe overall solution.

In the following sections we will describe the
rationale of distributed configuration using a con-
straint-based approach and provide a sound and
complete algorithm for distributed computation of
solutions. We will relate this approach to other tech-
niques from distributed problem solving and sketch
the implementation in the CAWICOMS configura-
tion workbench.

2. DISTRIBUTED PROBLEM SOLVING
CHARACTERISTICS

In the light of the growth of Internet-enabled
communi-cation and commerce, the field of Dis-
tributed Artificial Intelligence is rapidly growing and
is an active research area. On the one hand multi-
agent systems (MAS) with loosely coupled, autono-
mous and negotiating agents are capable of per-
forming cooperative tasks, whereas on the other
hand originally centralized problem solving mecha-
nisms, e.g., Constraint Satisfaction [4], are extended
to cope with the distributedness of the task. Alto-
gether, both approaches require some sort of com-
mon understanding and vocabulary of the problem
domain e.g., an ontology of the domain, as well as

configuration systems have to be

[IIIII@H W

taken into account:
* The configurators do not nec-

Additional peripheral hardware

essarily work in parallel like agents
do, i.e., we are given a sort of a
multi-tier client-server interaction,
whereby during the configuration of
the overall solution - including the
main switch - the responsible configurators of the
add-on products are only contacted on demand. For
instance, the detailed configuration of some optional
router hardware is only done if the router is re-
quired in the overall solution.

* Consequently, the involved configurators do
not have equal priorities, because of the hierarchi-
cal order between these systems given by the sup-
ply chain. Such an prioritization is also required in
approaches like Distributed CSPs [5], whereby in
our application this ordering is solely determined
by the supply chain and is tree-structured with re-
spect to the subassemblies that build the overall
solution?. In order to communicate duringthe search
for solutions, neighbouring nodes in the tree of in-
teracting configurators have to be integrated, i.e.,
they have to share parts of their product model.

>
&S

8
$Ye
. S
Configuration Agent s
Configuration KB
irement
g - Solutions
. Mediating
S capabilty &
o %
RS &%1%97
A N
° user Configuration Agent |[5 Configuration Agent
Toquirement &)
offer Configuration K8 [iz| ~eduirmentg -
. 8 solutions Configuration KB
! Wediating s S
capabilty
,‘99(/
%/o®®a
’i)/) O{’
N 5)il Configuration Agent
Configuration KB

Figure 2 Tree-structured supply chain

* The involved configuration systems at the leaf
level of the tree may not all implement the same
problem solving mechanisms; therefore, an inter-
mediate layer providing minimal communication
facilities as well as a mapping between ontological
concepts has to be implemented for the participat-
ing configurators.

2 Note that the supply chainitselfis not necessarily tree-structured with respect to the involved companies.

102

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Christian Russ, and Markus Zanker /
Computing, Vol. 1, Issue 2 (2002), 101-107

3. BASIC PROBLEM SOLVING
ALGORITHM

Distributed configuration in the CAWICOMS
framework [6] is based on Constraint Satisfaction (CS)
techniques. This is a natural choice because Constraint
Satisfaction has shown to be an adequate mecha-
nism to represent and solve configuration problems
([2L.[7]) and because of the availability of industrial-
strength constraint solvers. We will now describe the
basic distributed algorithm of our approach based on
a standard CSP mechanism with a specific form of
dynamic variable activation (DCSP, see [8]). Note,
that in the implementation we extend the basic for-
ward-checking and backtracking constraint solving
algorithm implemented in ILOGs? JConfigurator li-
brary; however the approach can generally be ap-
plied to any solver relying on this search technique.

The overall problem is divided into a set of ex-
tended CSPs (Dynamic Component - CSP) shar-
ing variables, whereby the assignment of a value
for one individual variable lies in the responsibility
of exactly one DC-CSP solver. Furthermore, each
DC-CSP is assigned a possibly empty set S of sup-
plying DC-CSPs with which it shares some vari-
ables, whereby sharing can be done in two ways in
a client-server like relationship:

a) a supplying DC-CSP can “publish” some vari-
ables to the configurator at the next higher level of
the supply chain; these variables are integrated into
the DC-CSP at the next level where additional con-
straints may be defined. The values for these vari-
ables are computed by the supplier configurator and
communicated to its client who checks the consis-
tency with its local problem.

b) some variables defined in a client DC-CSP
may be relevant for the configurator at the next
lower level of the supply chain, i.e, changes in these
variables have to be communicated to the supplier.

Q relevant variable Configurator A

for supplier

. Responsibility of,
supplier

Supplying
Configurator C

Supplying
Configurator B

Figure 3 Sharing variables

3 see http://www.ilog.com

Within our approach we require that the graph
defined by these dependencies between DC-CSPs
form a strict tree structure, i.e., sharing of vari-
ables can only be done between two neighboring
DC-CSPs.

We will first describe the “local” extended Con-
straint Satisfaction Problems that a participating
configurator has to solve.

Definition (DC-CSP): A Dynamic-Compo-
nent CSP consists of

* a finite set of variables V ={v, ... v},

* each assigned a finite domain D = {d,, ... d },

* a set C of constraints restricting the
combin-ations of values the variables can si-
multaneously take, and

* a set S of suppliers involved in solving the
DC-CSP and a distinguished activation con-
straint AC for each se S (denoted as s.AC).

Each variable v € V can be marked with one s
O S (denoted as v.supplier) which is responsible for
assigning a value foritand a set r H S (denoted as
v.relevant) for which an assignment to v is relevant.

V="V,, vV, whereby V, . is the set of ini-
tially active variables and V. contains the set
of dynamically activated variables.

An activation constraint s.AC describes the
condition under which the variables of supplier s
have to be activated.

Compared with the classical Dynamic CSP, ac-
tivation is not done on the level of variables but
rather complete subassemblies can be activated.
The activation of the variables of a supplieris based
on a arbitrarily complex constraint*. The overall
distributed problem consists of a strict tree of such
DC-CSPs.

Definition (DC-CSP-Tree): 4 DC-CSP-Tree
T consists of a set of DC-CSPs forming a tree
structure according to the supplier sets S of the
involved DC-CSPs , where

* one DC-CSP is the root of the tree, and

* the set of suppliers S for leaf-nodes is LI .

Informally, two DC-CSPs can only share vari-
ables if they are in a predecessor-successor rela-
tionship in the DC-CSP-tree.

Definition (Solution to a DC-CSP): 4 solu-
tion to a DC-CSP is an assignment of a value
from its domain to every variable in V, ., and to
every variable v in Vo where v.supplier = s and
s.AC is satisfied in a way that all constraints in
C are satisfied.

For each s € S where s.AC is satisfied, the set
of assignments F to the set SV = {v € V| v.supplier

* Note that we assume that each subassembly in the local problem is provided by a different supplier.

103

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Christian Russ, and Markus Zanker /
Computing, Vol. 1, Issue 2 (2002), 101-107

=s Vv s € vrelevant } must be part ofa solution of
the DC-CSP of supplier s.

The above definition states that we have to en-
sure that all variables of the suppliers that are ac-
tive are assigned a value and that the assignments
of values to these subsets of shared variables are
consistent with the supplier’s DC-CSP. In this sup-
ply-chain setting, the goal is then to find a solution
to the DC-CSP which is the root of tree. Finding
such a solution involves searching for solutions to
other DC-CSPs depending on the activation of di-
rect successors of DC-CSPs in the tree. We will
now describe the extended forward-checking back-
tracking algorithm that is implemented in an inner
node of the tree based on the description of [4]
(FC-1, p. 127).

The procedure SDFC starts with computing the
set of currently active variables (Unlabelled) that
still have to be assigned a value by evaluating the
activation constraints. Next, it selects an unassigned
variable and tests whether it is to be assigned lo-
cally or by a supplier configurator (5). In the latter
case, we compute the sets of all variables of that
supplier (6), the set of all variables that are rel-
evant (7) as well as the current domains of these
variables (8). Before retrieving
the first or another solution for
this set of variables (11), we call

the reset procedure of the sup- "%

problem on the higher level (13) using procedure
integrateSolution in Listing 2 and propagate do-
main reductions — (compare procedure Update
from [4]).

In cases where this integration is successful we
continue solving the CSP with the remaining
unlabelled variables (15). Note that when calling a
supplier configurator, a// variables of the respec-
tive supplier are assigned a value at once. In addi-
tion, in case of backtracking, the loop from (10) to
(17) will try to find another complete assignment
for that supplier.

Beginning at line (20), the standard backtrack-
ing algorithm from [4] is used with extensions in
lines (23,24): When we try to select a value for a
variable which is marked to be relevant for some
suppliers, we have to check both the consistency
with the local constraints as well as the consistency
of the value with those suppliers for which this vari-
able is relevant and which have already configured
their subassembly. In procedure chkRe! (Listing 2)
we therefore collect all the variables from each
supplier together with the relevant variables and
their current domains and call procedure
checkConsistency at the supplier configurator.

procedure SDFC-Start(V,;, Vg, D,C)
SDFC(V,y;3). D.C)

procedure SDFC(Unlabelled,Labels,D, C)

plying configurator (9) —see List-
ing 3: This is done because we

; 2 Unlabelled = Unlabelled U {v € V,,, | v.supplier € S A <v, > & Labels}
assume that a Supp lier ,Can p ro- 3 if Unlabelled = {} then retm{n Lab:)'lsJ o ’
vide more than one solution 8IVeN 4 electx from Unlabelled; supplier = x.supplier;
some inputs; in the loop from 5 ifsupplier #{} then //found remote var; collect all variables for that supplier
(10) to (17) we try to find a suit- © svars = {v € Unlabelled | v.supplier = supplier}// collect set of relevant variables

. . 7 mars = {v e Unlabelled | supplier e v.relevant}
able solution that can be inte- 8 domains = current domains of svars and rvars
grated into the problem at the 9 supplier.reset();
higher level. Therefore the sup- 10 repeat //try to retrieve adequate solution from supplier
. .. . 11 sLables = supplier.nextSolution(svars,rvars, domains)
pher has to maintain the list of 12 if (sLabels #NIL) then // test supplier's solution for consistency
solutions (oldLabels)it provides 13 D’ = integrateSolution(svars, sLabels)
in the current context. rese t() 14 if no constraint violated and no domain in D’ empty then
.. . . 15 result = SDFC(Unlabelled — {svars}, Labels + sLabels, D’)
causes this information to be dis- 16 if result= NIL then return (result)
carded. 17 until sLabels = NIL;
Note, that the inner nodes in 18 return NIL //no solution from supplier
. . 19 else // local var
the tree of suppliers will use pro- 5, repeat
cedure SDFC (with the exten- 21 select d from Dy ; delete d from D,;
sion ofstoring pl‘iOI’ solutions) to 22 if (Labels + <x,d>) violates no constrgmts then . .
. 23 rSuppliers = v.relevant // check, if value selection ok for suppliers.
assign labels; however, we do not 24 if chkRel(rSuppliers,Labels + <x,d>) = ok
want to enforce the usage of this 25 D’ = Update(Unlabelled — {x}, D, C, <x,d>)
ia 26 if (no domain in D’ is empty) then
procedure at the '1€af nO(,ieS mn 27 result = SDFC(Unlabelled — {x}, Labels + {x,d},D’)
order to support integration of 28 if result # NIL then return (result);
other configuration systems. If 29 uniil D, =}
the supplier is able to provide la- ;‘Zd return NIL // o solution found

bels for the variables (12), we
try to integrate these into the

S = set of suppliers, where S.AC is satisfied
// compute set of currently active variables which are not assigned a value

Listing 1. Procedure SDFC

104

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Christian Russ, and Markus Zanker /
Computing, Vol. 1, Issue 2 (2002), 101-107

procedure integrateSolution(svars, sLabels)
if (Labels U sLabels) violates no constraint then
for each <x,v> € sLabels
D’ = Update(Unlabelled — svars,D, C, <x,v>)
end

procedureUpdate(Unlabelled,D,C,Label)
D’ =Dy
/* propagate values and reduce domains. */
return (D’)

end

procedure chkRel (rSuppliers, Labels)
for each supplier in rSuppliers
/* collect information for supplier */
svars = {v € V| v. supplier = supplier}
rvars ={v € V| supplier € v.relevant)}
curdomains = current domains of svars and rvars
if 7x e svars where <x,v> & Labels then
/* already configured subassembly */
result=supplier.checkConsistency(svars,rvars, domains)
if result = false then return false
return true /* everything ok */
end

Listing 2. Auxiliary procedures

The next listing contains the procedures that have
to be implemented by the supplier configurators:

procedure checkConsistency(svars, rvars, domains)
if domains not empty and assignments consistent with
local constraints then
return true
else return false
end

procedure reset()
oldLabels = {}
end

procedure nextSolution(svars,rvars,curDomain)

sLabels = assign labels to svars observing local constraints
and reduced domains from curDomain (using SDFC)

whereby labels & oldLabels.
if no consistent assignment possible then
return NIL

oldLabels = oldLabels _ sLabels

return sLabels
end

Listing 3. Procedures of supplier
confiugurator

The minimal requirements for integration of an
existing configuration system at leaf nodes is there-
fore the implementation of three functions: assigning
values to variables (nextSolution), checking for con-
sistency of assignments and domain reductions as well
as resetting the set of previously returned solutions.

COMPLETENESS: The basis of the sequential
distributed algorithm is a standard backtracking algo-
rithm. Therefore, the completeness of the algorithm
is ensured by exhaustive domain exploration. Conse-
quently, the algorithm will find a solution if one exists.
The only modifications to the basic procedure lie in
dynamic activation of variables which involves some
additional variable ordering (all variables of one sup-
plier are instantiated in one step). More details on the

required properties for finding solutions to distributed
configuration problems can be found in [9].

4. IMPLEMENTATION FRAMEWORK

One of the main goals of the CAWICOMS
project is the development of a framework for the
rapid development of distributed configuration ap-
plications. The two major issues within this area
are mechanisms for distributed configuration prob-
lem solving and the devel opment of tools and tech-
niques for knowledge acquisition and knowledge
integration between cooperating (heterogeneous)
configuration systems. In the current prototype,
ILOG’s JConfigurator libraries are used for the
problem solving task: Based on Constraint Satis-
faction, this tool provides a more abstract layer for
the configuration domain, i.e., instead of speaking
of variables, the configuration problem is described
in terms of components, properties and intercon-
nections between components (see [3],[10]). We
extended this preference-based search mechanism
according to the presented algorithm in a way that
a supplier is contacted in situations when during
the search process it is determined that a compo-
nent or subassembly from a supplier has to be in-
cluded in the configuration.

In order to allow integration of heterogeneous
configuration systems, data exchange inthe supply
chain is facilitated using an XML-based protocol.
This mechanism allows us to exchange complex
data structures using XML-Schema documents and
also serves as a generic interaction protocol for
configuration problem solving over HT TP (for more
details, see http://www.cawicoms.org).

Beside adequate algorithms for distributed prob-
lem solving, one of the main problems of such sys-
tems relates to knowledge acquisition and integra-
tion: The participants in the supply chain must have
a common understanding and vocabulary of the
problem domain. Therefore, during the integration
process, a common ontology of the domain has to
be defined and the different product models of the
suppliers have to be partially mapped. Within our
framework we base knowledge acquisition and
re-presentation for the configuration domain on the
usage of the Unified Modeling Language [7]. These
graphical models serve as a general notation for
modeling configuration problems and can be auto-
matically compiled into the specific representations
of existing configuration systems.

Finally, one goal for the design of the implemen-
tation framework is to minimize the requirements
on the configuration systems at least for the leaf-
levels of the supply chain: Basically these systems
may not even implement a constraint-based algo-

105

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Christian Russ, and Markus Zanker /
Computing, Vol. 1, Issue 2 (2002), 101-107

rithm, since the only requirement according to the
algorithmis that — given some variables and values
— they can compute at least one solution or report
failure of finding a solution.

5. RELATED WORK

In recent years, some major advances in apply-
ing constraint technology indistributed environments
(Distributed Constraint Satis-faction) have been made
([5],[91,[11]). The main goal of these approaches is
to search for solutions in constraint networks that
are distributed among several agents. Similar to our
approach, the motivation does not lie in a speed-up
of the search process through parallelization but is
rather justified by the fact that the knowledge itself
is distributed and there are e.g., security and confi-
dentiality issues to be considered. Although the un-
derlying algorithms are described in a way that one
agent holds exactly one variable, these approaches
can theoretically be generalized to cases where each
agent can solve more complex local CSPs.

The main difference compared to our approach
is that these algorithms work highly parallel (asyn-
chronously), whereas our algorithm is — in the cur-
rent version — purely synchronous. However, in the
application domain of product configuration of
telecommunication switches, parallel configuration
of subassemblies is not desirable or possible be-
cause of the given structure of the configurable
artifacts and the supply chains: it would not make
sense to start configuring some subassembly be-
fore it is decided if this subassembly will be needed
in the final product at all. Some small degree of
parallelism, however, can be simply introduced in
our algorithm, when we assume that a supplier will
always find a solution given some requirements and
that any solution of the supplier will not interfere
with the configuration at the higher level.

Although the agents in Distributed CSP ap-
proaches work independently in general, some
prioritization or ordering among the agents is needed
in order to ensure soundness and completeness (of
the backtracking mechanism). While this ordering
is predefined in [5] or dynamically computed from
the constraint graph [12], this hierarchy is given
through the product structure in our approach in a
natural way. Moreover, techniques like Asynchro-
nous Backtracking rely on no-good recording
which is both costly in terms of memory-consump-
tionas well as problematic in terms of confidential-
ity because by exchanging no-goods knowledge
about constraints is implicitly exchanged. While
these approaches solve a more sophisticated algo-
rithmic problem (allowing parallel computation), our
approach tackles a specific real-world problem using
existing commercial tools.

Future work on our approach will be to test the
applicability of existing enhancements of the basic
backtracking scheme (see e.g., [13]). More recent
work [14] on intelligent backtracking takes advan-
tage of the given structure of the constraint graph
(bi-connected com-ponents) in order to compile
partial solutions and jump back and forward during
the search process more intelligently thus reducing
the search space. These special constraint graph
structures (containing loosely connected clusters)
make this approach applicable in our domain: Typi-
cally, only a small set of all constraints are defined
between variables of different suppliers. Therefore,
improvements like “reusing” former solutions pro-
vided by suppliers when we had to backtrack and
the inputs for the suppliers did not change (com-
pare to [14]) will be incorporated in future versions
of the algorithm.

6. CONCLUSIONS

Product configuration of complex products and ser-
vices that are assembled from parts provisioned by
several suppliers in a supply chain are an important
issue intoday’s and future eCommerce environments.

Based on the requirements of a real-world ap-
plication scenario from the telecommunication do-
main, we have presented an algorithm for distrib-
uted configuration of such products in the supply
chain. Relying on sharing of variables (and product
models), the proposed algorithm is an extension of
a standard forward-checking and backtracking al-
gorithm for Constraint Satisfaction and was imple-
mented by extending a commercially available tool
for product configuration. We compared the algo-
rithm with related work in the field and elaborated
the specific demands for distributed problem solv-
ing in the domain of product configuration.

REFERENCES

[1] M. Stumptner. An overview of knowledge-
based configuration, AI Communications 10(2),
1997, 111-126.

[2] G. Fleischanderl, G. Friedrich,
A. Haselbyck, H. Schreiner and M. Stumptner.
Configuring Large Systems Using Generative
Constraint Satisfaction, IEEE Intelligent Sys-
tems, July/August, 1998.

[3] D. Mailharro. A Classification and Constraint-
based Framework for Configuration,
Al EDAM, Vol. 12, Cambridge University Press, 1998.

[4] E. Tsang, Foundations of Constraint Sat-
isfaction. (Academic Press, 1993).

[5] M. Yokoo. Distributed constraint satisfac-
tion - foundations of cooperation in multi-agent

106

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Christian Russ, and Markus Zanker /
Computing, Vol. 1, Issue 2 (2002), 101-107

systems (Springer, Berlin, Germany, 2001).

[6] L. Ardissono, A. Felfernig, G .Friedrich,
D. Jannach, R. Schaefer, M. Zanker. Intelligent
Interfaces for Distributed Web-based Product and
Service Configuration. Proc. Web Intelligence
(WI-2001), Maebashi, Japan, Lecture Notes in Ar-
tificial Intelligence, Springer, October, 2001.

[7] A. Felfernig, G. Friedrich and D. Ja-
nnach. UML as domain-specific language for
the construction of knowledge-based configu-
ration systems. Inter-national Journal of Soft-
ware Engineering and Knowledge Engineering
(IJSEKE), vol. 10 (4), 2000, 449-469.

[8] S. Mittal, B. Falkenhainer. Dynamic Con-
straint Satisfaction Problems. Proceedings
AAAI’90, Boston, MA, 1990, 25-32

[9] A. Felfernig, G. Friedrich, D. Jannach, M.
Zanker, Towards Distributed Configuration. Proc.
KI-2001, Joint German/Austrian Conference on

Al Vienna, Austria, Springer, September, 2001.

[10] U. Junker. Preference-programming for
Con-figuration, Proc. IJCAI'01 - Configuration
Works-hop, Seattle, Wa, August, 2001.

[11] M. Silaghi, D. Sam-Haroud, B. Faltings.
Asynchronous Search with Aggregations. Proc.
AAAI/TAAL 2000, Austin, TX, 2000, 917-922.

[12] Y. Hamadi, C. Bessiere, J. Quinqueton.
Backtracking in Distributed Constraint Net-
works, Proc. ECAI’'9S8, Brighton, UK, John
Wiley, 1998, 219-223.

[13] R. Dechter. Enhancement schemes for
Constraint Processing: Backjumping, Learning,
and Cutset decomposition. Artificial Intelli-
gence, 41(3), Elsevier, 1990, 273-312.

[14] J. Baget, Y. Tognetti, Backtracking
Through Biconnected Components of a Con-
straint Graph, Proc. IJCAI'01, AAAI Press. Se-
attle, 2001, 291-296.

Alexander Felfernig is a
research assistantin Computer
Science at the University
Klagenfurt, Austria, where he
obtained his MS degree and
PhD in Applied Informatics.
His research interests are in
the fields of knowledge-based
configuration, knowledge rep-
resentation and the Semantic
Web. Within the European

Union project CAWICOMS he focused on design
and implementation of the knowledge acquisition
component.

Gerhard Friedrich is full
professor of Computer Sci-
ence at the University Klagen-
furt, Austria, where he directs
the Computer Science and
Manufacturing Research
Group. His research interests
include configuration, knowl-
edge representation and diag-
nosis. He received his PhD
and MS in Computer Science from the Vienna Uni-
versity of Technology.

Dietmar Jannach works
asresearch assistantin Com-
puter Science at the Univer-
sity Klagenfurt, Austria, where
he obtained his MS degree
and PhD in Applied Infor-
matics. His current research
areas include knowledge-
based configuration and the
integration of model-based di-

agnosis techniques into the configurator develop-
ment and deployment process. Within the
CAWICOMS project he focused onthe development
and implementation of distributed problem solving
algorithms.

Chrisitan Russ works as
researcher at the Computer
Science & Manufacturing Re-
search Group atthe University
Klagenfurt where he heads the
development team in the
CAWICOMS project. He holds
a master degree in Applied
Informatics and his research
interests lie in component-
based software development frameworks, knowl-
edge management, and virtual digital assistants.

Markus Zanker is a re-
search and teaching assistant
in Computer Science at the
University Klagenfurt, Austria,
where he obtained his PhD and
master degrees in Applied
Informatics and in Business
Administration. His research
interests are in the field of con-
figuration, distributed con-
straint satisfaction and the
Semantic Web. He partici-
pated in the CAWICOMS project and focused on
distributed problem solving.

107

