POST-CORRECTION OF ADC NON-LINEARITY USING INTEGRAL NON-LINEARITY CURVE

Vladimir Haasz 1), David Slepicka 1), Petr Suchanek 2)

1) Czech Technical University in Prague, Faculty of electrical Engineering, Technicka 2, 16627 Praha 6, Czech Republic, haasz@fel.cvut.cz, slepicd@fel.cvut.cz, http://measure.feld.cvut.cz
2) Evolving systems consulting s.r.o., Čs. armády 14, 160 00 Praha 6, Czech Republic, petr.suchanek@evolvsys.cz

Abstract: The accuracy of AD conversion can be improved using the post-correction of digitizer non-linearity. In principle two methods could be applied – look-up table or an analytical inverse function of integral non-linearity curve (INL(n)). Look-up table can be easily implemented but it demands huge memory space particularly for high resolution ADCs. Inverse function offers flexible solution for parameterization (e.g. frequency dependence) but it also requires fast DSP for real-time correction. The data or coefficients for both methods are frequently determined from a histogram of acquired pure sinusoidal signal. Non-linearity curve can also be gained by another procedure demanding significantly less samples – approximation from a frequency spectrum. The correction of ADC nonlinearity by means of inverse function of INL(n) curve is analyzed in this paper and the results are presented.

Keywords: analog-to-digital converter, ADC non-linearity, INL, transfer function, approximation, non-linearity correction, simulations, experimental verification.

1. INTRODUCTION

The ADC non-linearity is inherently described by the Integral Non-linearity curve INL(n) which is defined as the difference of ADC output and input as the function of the input level. INL(n) can be directly determined using histogram method [1], but this method demands a huge number of samples in a record, thus it is time consuming. However, non-linearity causes also a distortion in the digitized signal and the frequency spectrum can provide similar information as the INL(n) in the code domain.

The INL(n) curve can be split into its low code frequency component (LCF) and the high code frequency component (HCF). The LCF (the rough curve of the INL(n)) – see Fig. 1, dotted curve) is responsible for harmonic distortion at lower harmonic components [2, 3, 4], usually the strongest are 2nd and the 3rd ones. If an approximation of the INL(n) curve using polynomials is applied, the third order polynomial is mostly sufficient for the following integral non-linearity correction.

2. APPROXIMATION OF INL(N) CURVE

Using polynomials the INL(n) is approximated by

Fig. 1 – An example of INL(n) curve and its low code frequency component (dotted curve)
\[INL(n) = \sum_{h=1}^{H_{\text{max}}} a_h x^h(n) \]

where \(a_h \) are the nonlinearity coefficients up to the maximum order \(H_{\text{max}} \), which is the highest harmonic component considered, \(n \) is the normalized ADC code with a bipolar range, and \(x \) the ADC input. Having the coefficients \(a_h \) and consequently the approximation of \(INL(n) \) curve, the non-linearity of digitizer can be corrected. The approximated transfer function \(TF \) has to be calculated by adding a straight line to the \(INL(n) \), such that

\[TF(n) = n + INL(n) \]

where \(n \) is the ADC code and after the substitution it can be expressed as

\[TF(n) = n + \sum_{h=1}^{H_{\text{max}}} a_h x^h(n) \]

If the transfer function \(TF \) is monotonical, its inverse exists. For this case, let’s propose that the approximation of the inverted transfer function \(TF^{-1} \) will also be a polynomial of the same order \((K_{\text{max}} = H_{\text{max}}) \) defined as

\[TF^{-1}(y) = \sum_{k=1}^{K_{\text{max}}} b_k y^k \]

where \(y \) is the ADC output. Substituting \(y = TF(n) \) from (3) into (4)

\[TF^{-1}(TF(n)) = \sum_{k=1}^{K_{\text{max}}} b_k \left[\sum_{h=1}^{H_{\text{max}}} a_h n^h \right]^k \]

The distortion of the 2nd and the 3rd harmonic component is usually the most important for majority of digitizers and the higher components are usually negligible. Therefore the \(K_{\text{max}} = H_{\text{max}} = 3 \) will be taken into account for the following solution. In this case the general expression (5) changes to

\[\frac{1}{3!} \left(\sum_{h=1}^{H_{\text{max}}} a_h n^h \right)^3 = b_1 \left(a_1 n + a_2 n^2 + a_3 n^3 \right)^3 + \]

\[+ b_2 \left(a_1 n + a_2 n^2 + a_3 n^3 \right)^2 + \]

\[+ b_3 \left(a_1 n + a_2 n^2 + a_3 n^3 \right) \]

Considering

\[TF^{-1}(TF(n)) = n \]

and comparing the coefficients of the same powers of \(n \) an over determined equation system arises (3 unknowns variables \(b_1, b_2, b_3 \), 9 equations).

Two methods for the determination of coefficient \(b_k \) are presented in this paper. In the first method the coefficients \(b_1, b_2, b_3 \) are determined from 3 low-order equations, the equations with polynomials \(n^l, l > 3 \) are neglected. The coefficients are given by

\[b_1 = \frac{1}{a_1}, \quad b_2 = \frac{a_1}{a_2}, \quad b_3 = \frac{2a_1^2}{a_3} - \frac{a_1}{a_4} \]

The second method is more sophisticated. Since equation (7) can hardly be fulfilled completely the error function

\[e = \left(TF^{-1}(TF(n)) - n \right)^2 \]

is minimized (least square).

Let’s integrate the error function over the full-scale of the ADC to obtain the area below the error function. The full-scale range of the ADC spans over \((-1;+1)\) interval because of normalization.

\[I(b_1, b_2, b_3) = \int_{-1}^{1} \left[\left(TF^{-1}(TF(n)) - n \right)^2 \right] dn \]

and after the substitution from (6)

\[I(b_1, b_2, b_3) = \int_{-1}^{1} \left[\left(b_1 \left(a_1 n + a_2 n^2 + a_3 n^3 \right) \right)^3 + \right. \]

\[+ b_2 \left(a_1 n + a_2 n^2 + a_3 n^3 \right)^2 + \]

\[+ b_3 \left(a_1 n + a_2 n^2 + a_3 n^3 \right) - n \right)^2 dn \]

Integration (11) eliminates the variable \(n \) and only variables \(b_3 \) remain. Let’s take the partial derivatives of the \(I(b_1, b_2, b_3) \) function with respect to three variables and equal them to zero.
The system with three equations of three variables is obtained
\[
\begin{align*}
 c_1 b_1 + c_2 b_2 + c_3 b_3 &= d_1 \\
 c_1 b_1 + c_2 b_2 + c_3 b_3 &= d_2 \\
 c_1 b_1 + c_2 b_2 + c_3 b_3 &= d_3
\end{align*}
\]
(13)
where \(c_i\) and \(d_i\) are collected terms resulting from the partial derivations (12), e.g.
\[
\frac{4}{3} a_1^2 + \frac{4}{5} a_2^2 + \frac{8}{5} a_3 + \frac{4}{7} a_3^2
\]
and
\[
\frac{4}{3} a_1 + \frac{4}{5} a_3
\]
(14)
(15)
The equations (13) can be rewritten into a matrix form
\[
C b = d
\]
(16)
and the coefficients \(b_1, b_2, b_3\) can be calculated by applying the Cramer's rule based on determinants
\[
b_1 = \frac{\det(C_1)}{\det(C)}, \quad b_2 = \frac{\det(C_2)}{\det(C)}, \quad b_3 = \frac{\det(C_3)}{\det(C)}
\]
(17)
The solution is
\[
b_1 = \frac{d_1 c_1 e_1 + d_2 c_2 e_2 + d_3 c_3 e_3 - c_1 d_2 e_2 - c_1 d_2 e_2 - d_1 c_2 e_2}{c_1 c_2 e_1 + c_2 c_2 e_1 + c_1 c_2 e_1 - c_1 c_2 e_1 - c_1 c_2 e_1 - c_1 c_2 e_1}
\]
\[
b_2 = \frac{c_1 d_1 e_1 + c_2 d_2 e_2 + c_3 d_3 e_3 - c_1 d_2 e_2 - c_1 d_2 e_2 - d_1 c_2 e_2}{c_1 c_2 e_1 + c_2 c_2 e_1 + c_1 c_2 e_1 - c_1 c_2 e_1 - c_1 c_2 e_1 - c_1 c_2 e_1}
\]
\[
b_3 = \frac{c_1 c_2 e_1 + c_2 c_2 e_1 + c_1 c_2 e_1 - c_1 c_2 e_1 - c_1 c_2 e_1 - c_1 c_2 e_1}{c_1 c_2 e_1 + c_2 c_2 e_1 + c_1 c_2 e_1 - c_1 c_2 e_1 - c_1 c_2 e_1 - c_1 c_2 e_1}
\]
(18)

3. SIMULATION OF NON-LINEARITY CORRECTION

The correction of the simulated ADC nonlinearity was performed in the second step. The coefficients of the polynomials of the approximated non-linearity INL(n) curve (1) were computed from the histogram method [1] measured by the digitizer NI PXI 5122. Spectrally pure (filtered) testing signal (THD < -130 dB) was used for this purpose [5]. The approximation of the inverted transfer function was found applying the polynomials. Only the most dominant coefficients \(a_i\) (the 2\(^{nd}\) and the 3\(^{rd}\) order) were considered.

The levels of harmonic components of the simulated output signal and of the same signal after the correction are presented in Table 1. The performance of both methods mentioned above is shown.

<table>
<thead>
<tr>
<th>Harmonic component</th>
<th>Digital output before correction</th>
<th>Digital output after correction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct inversion</td>
<td>LSE minimization</td>
</tr>
<tr>
<td>2</td>
<td>-77dB</td>
<td>-131dB</td>
</tr>
<tr>
<td>3</td>
<td>-80dB</td>
<td>-136dB</td>
</tr>
</tbody>
</table>

The modeled input and corresponding output signal were in a very good agreement with the real signals. The correction applied on this signal showed to be very effective. However, the correction on real output data did not improve the signal as expected. The reason seemed to be in other ADC imperfections (additive noise, jitter in sampling, non-zero sampled signal phase and hysteretic behavior) which were not taken into account in the simulation. To find the source of the worse correction results in the case of real data further simulations were executed. The influence of the incoherently sampled signal (with non-zero \(\alpha\)) was suppressed by applying the Blackman-Harris window of the 7\(^{th}\) order to the recorded data. The simulated distorted ADC output was generated as

\[
ADC_{output} = y = \sum_{h=1}^{3} \text{sign}(a(h)) \left(\frac{a(h)}{a(1)} \right)^h \text{ADC}_{input}
\]
(19)
where
\[
a = [\text{adc_full_scale}, \text{adc_full_scale}, \text{adc_full_scale}]
\]
(adc_full_scale = 2\(^{23}\) for the simulated 23-bit ADC and the numbers –18 and –13 are the coefficients of the 2\(^{nd}\) and the 3\(^{rd}\) non-linearity order). No rounding (quantization in amplitude) of the ADC output was used in order to better observe the performance of the correction. The following ADC imperfections were added to the modeled output signal:

- additive white noise,
- sampling jitter,
- influence of non-zero sampled signal phase,
- hysteresis.

The result corresponding to harmonic distortion only was used as the reference one (Fig. 2). The influence of the additive noise is presented in Fig. 3.
This simulation proved that the presence of an additive white noise does not cause noticeably influence the results of correction – higher harmonic components were suppressed to negligible level below noise. The same result was found for sampling jitter. The simulation with variable non-zero sampled signal phase showed also no influence. The last imperfection of a real ADC, which was investigated, was the hysteresis. For better observation the resulting frequency spectrum as well as the integral non-linearity curve (the deviation from the ideal transfer function – residual amplitude) were calculated (see Fig. 4).

The residual amplitude for falling and rising slopes was plotted individually. The dashed and dot-dash lines were reconstructed from the falling and rising slopes of the signal. INLd is so called "differential-mode" component which corresponds to ADC hysteresis behavior. The full line represents the “common-mode” non-linearity component INLc [6]. The hysteresis was modeled using equation

\[
y^{\text{hyst}}(x) = \beta \left(\frac{x}{X_1} \right)^2 - 1 \sign(x'),
\]

where \(y^{\text{hyst}}(x)\) is the additive contribution of the ADC hysteresis to its output, \(\beta\) is the proportion factor, \(X_1\) is the amplitude of the input signal, and the \(\sign(x')\) is a binary function with +1 and −1 output values depending on the slope of the input signal \(x\).

Fig. 4c shows “typical” curves of residual amplitude, which is significantly different for falling and rising slopes.

\[
\begin{align*}
\text{SINAD} & = 91 \text{ dB} \\
\text{THD} & = -96 \text{ dB} \\
\text{SNHR} & = 93 \text{ dB}
\end{align*}
\]

Fig. 3 – Non-linearity correction of simulated signal – sine-wave signal with white noise (\(\sigma^2 = 60\) LSB) and harmonic distortion

\[
\begin{align*}
\text{SINAD} & = 96 \text{ dB} \\
\text{THD} & = -96 \text{ dB} \\
\text{SNHR} & = 93 \text{ dB}
\end{align*}
\]

a) Frequency spectrum before correction

b) Frequency spectrum after correction

Fig. 2 – Non-linearity correction of simulated signal – sine-wave signal with harmonic distortion

\[
\begin{align*}
\text{SINAD} & = 163 \text{ dB} \\
\text{THD} & = -111 \text{ dB} \\
\text{SNHR} & = 165 \text{ dB}
\end{align*}
\]

a) Frequency spectrum before correction

b) Frequency spectrum after correction

Fig. 3 – Non-linearity correction of simulated signal – sine-wave signal with white noise (\(\sigma^2 = 60\) LSB) and harmonic distortion
The result of the correction is presented in Fig. 4d. The “common mode” non-linearity was correctly estimated as $\Delta f(x) = -(18.0x)^2 - (13x)^3$ LSB and removed. Only the hysteresis remained after the correction. It corresponds to the premise that the proposed method can correct only “pure” non-linearity, but not the hysteresis.

4. EXPERIMENTAL VERIFICATION

To verify the simulation results experimental measurements using two high quality digitizers (23-bit Digitizer VXI HP E1430A and 24-bit Digitizer NI PXI-5922) were performed. High-quality ADC testing system at the CTU in Prague [5] was applied for this purpose. The input signal was generated by ultra-low distortion Stanford Research DS360 generator and it was subsequently filtered by band-pass filter to achieve high spectral purity of the signal. The record of 2 MSa was divided into four segments. One of them was selected as the reference for calculating coefficients of the inverted polynomial. The other three data segments were then corrected. In the case of VXI HP E1430A digitizer input signal frequency of 20.19 kHz was used. An example of the frequency spectra of the output signal before and after the correction is shown in Fig. 5. The THD was improved by about 15 dB by means of the correction.

Secondly, the 24-bit Digitizer NI PXI-5922 was tested. In this case two frequencies of input signal were used: 20.19 kHz and 1.053 MHz. The other conditions remained the same. The residuals before and after the correction show more details than the frequency spectra in this case (see Fig. 6 and 7). In case of 20 kHz input signal the hysteresis slightly influences the result. The “common mode” non-linearity is well suppressed by the correction but the residual non-linearity of about 15 LSB caused by hysteresis (different for falling and rising slopes) remains. The resulting “common-mode” non-linearity decreased about 20 times.
Fig. 5 – Frequency spectra of digitized output signal (VXI HP E1430A)

Fig. 6 – Integral non-linearity (NI PXI-5922, $f_{inp} = 20.19$ kHz)

Fig. 7 – Integral non-linearity (NI PXI-5922, $f_{inp} = 1.053$ MHz)
However, for 1 MHz input signal the hysteresis is about two hundreds times higher then for 20 kHz and the “differential-mode” non-linearity caused by the hysteresis is dominant. Common-mode integral non-linearity is suppressed well by the correction indeed but the residual “differential-mode” non-linearity remains and the remaining non-linearity after the correction is practically the same as before.

5. CONCLUSION

Two methods for calculation of coefficients of the inverted polynomial used for ADC non-linearity correction were introduced, derived and compared. The first one uses more straightforward derivation of the coefficients; the second one minimizes the least square error. The first simulation did not take ADC imperfections (additive noise, jitter in sampling, non-zero sampled signal phase and hysteretic behavior) into account. They showed that the both methods used for calculation coefficients are applicable. Simulations verified that the correction is useable also in the cases when other ADC imperfections are not negligible. This statement was also confirmed experimentally.

The proposed method of ADC non-linearity correction using polynomial approximation of the integral non-linearity INL(n) and its inverse function gives mostly good results but not always. It concerns e.g. digitizers with noticeable hysteresis which is particularly common for signals with frequency near the maximum input frequency of digitizers. Generally, inverse function used for post-correction of INL is frequency dependent. For this reason it cannot be directly used for wide-band signals. However, this issue also concerns other post-correction methods, e.g. look-up table.

6. REFERENCES