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Abstract: The model of interaction between learning and evolution for the evolving population of modeled organisms is 
designed and investigated. The mechanism of genetic assimilation of the acquired features during the numerous 
generations of Darwinian evolution is studied. The mechanism of influence of the learning load is analyzed. It is 
showed that the learning load leads to a significant acceleration of an evolution. The hiding effect is also studied. This 
effect means that a strong learning inhibits the evolutionary search in some situations. 
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1. INTRODUCTION 
In the XIX century, the concepts, suggesting that 

interaction between learning and evolutionary 
processes is possible, appeared [1-3]. According to 
these concepts, learning can contribute significantly 
to an evolutionary process. This type of influence of 
learning (or other acquisition of useful features 
during the life of the organism) on the evolutionary 
process is often called the Baldwin effect [1]. 
According to this effect initially acquired features 
can become inherited during a number of 
generations. The evolutionary “re-invention” of 
useful features, initially obtained by means of 
learning, is often called genetic assimilation [4]. 

Number of works attempted to model and to 
analyze interactions between learning and evolution 
by means of computer simulations [5-10]. In 
particular, Hinton and Nowlan demonstrated that 
learning can learning can guide an evolutionary 
process to find the optimum [7]. Mayley 
investigated different aspects of interaction between 
learning and evolution [8] and demonstrated that the 
hiding effect can take place if the learning is 
sufficiently strong. The hiding effect means that if 
learning increases the chances of finding a good 
phenotype independently on the genome, then 
learning can also inhibit the evolutionary 
optimization and genetic assimilation. In addition, 
the learning load (the cost of learning) was taken 
into account in [8]. The learning load means that the 
process of learning has an additional load for the 
organism and fitness of the organism is reduced 

under the influence of the load. 
The interaction between learning and 

evolutionary optimization of a neural network 
control system of autonomous agents was modeled 
in [10].  The genetic assimilation of the acquired 
features of agent was observed during several 
generations of evolution. It was demonstrated that 
learning can significantly accelerate a process of 
evolutionary optimization. However, it was difficult 
to analyze the detailed mechanism of interaction 
between learning and evolution in these models [10], 
because these mechanisms were «hidden» in the 
dynamics of numerous synapse weights of neural 
networks of agents. 

This article develops the mentioned works; it 
uses works [7, 8] as background. In contrast to [7, 
8], the current work uses one of the most clear 
evolution model, namely, the quasispecies model, 
proposed by Eigen [11, 12], and quantitative 
estimations of evolutionary rate and the 
effectiveness of evolutionary algorithms, obtained in 
[13, 14]. The quasispecies model considers the 
process of evolution that is based on the selection 
and mutations of the genomes of organisms (without 
crossovers) and describes the main properties of the 
evolutionary process. The use of models and 
methods of works [11-14] allows getting a better 
understanding of the mechanisms of interaction 
between learning and evolution. In particular, our 
approach allows analyzing quantitatively the 
mechanism of genetic assimilation. 
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2. DESCRIPTION OF THE MODEL 
The evolving population of modeled organisms 

(or individuals) is considered. Similar to [7] we 
assume that there is a strong correlation between the 
genotype and the phenotype of the modeled 
organisms. We assume that the genotype (or the 
genome) and the phenotype of the organism have the 
same form, namely, they are chains; symbols of both 
chains are equal to 0 or 1. The length of these chains 
is equal to N. For example, similar to [7], we can 
assume that the genome encodes a model chain 
DNA, «letters» of which are equal to 0 or 1, and the 
phenotype is determined by the neural network of 
organisms, the synaptic weights of the neural 
network are equal to 0 or 1 too. The initial synaptic 
weights, received at birth of the organism, are 
determined by the genome (more precisely, the 
synaptic weights are equal to the genome symbols). 
These synaptic weights are changed by means of 
learning during organism's life.  

Similar to the quasispecies model, we assume 
that each organism has its own genome S0. The 
population consists of n organisms, organism’s 
genomes are equal to S0k, k = 1,..., n. The organism 
genome S0k is a chain of symbols, S0ki, i = 1,..., N. 
We also assume that the length of the chains N and 
the number of organism in population n are large: N, 
n >> 1. The values N and n don’t change in the 
course of evolution. Symbols S0ki are equal to 0 or 1. 
We assume that N is so large that only a small part 
of possible 2N genomes can be presented in a 
particular population: 2N >> n. Typical values of N 
and n in our computer simulations are as follows: N 
~ n ~ 100. 

The evolutionary process consists of a sequence 
of generations. The new generation is obtained from 
the old one by selection and mutations. Genomes of 
organisms of the initial generation are random. 

In order to consider learning processes, we 
introduce two types of sequences: 1) genomes or 
initial sequence S0k that is received by the organism 
at its birth, and 2) the current sequence of the 
organism STk. 

Organisms inherit the genomes S0k from their 
parents, these genomes don’t change during the 
organism life and are transmitted (with small 
mutations) to their descendants. Mutations are 
random changes of symbols S0ki. The organism 
receives the genome at its birth, the current sequence 
STk at the birth time moment is equal to the genome: 
STk(t = 1) = S0k. The life time of any organism is 
equal to T. The time is discrete: t = 1,...,T. The 
duration of the generation is equal to T. The 
sequence of STk is modified during the organism life 
by means of learning. The current sequence STk 
determines the organism’s phenotype. 

As descendants of organisms obtain just genomes 
S0k that organisms received from their parents and 
not sequences STk that are optimized by learning, the 
evolutionary process has the Darwinian character. 

It is assumed that there is an optimal sequence of 
Sm (components of which are also equal to 0 or 1), 
which is searched for in the processes of evolution 
and learning. At computer simulation, the sequence 
Sm was set to be the random one. 

Learning is performed by the following method 
of trial and error. Every time moment t each symbol 
of the sequence STk is randomly changed to 0 or 1, 
and if this new symbol coincides with the 
corresponding symbol of the optimal sequence Sm, 
then this symbol is fixed in the STk; otherwise, the 
old symbol of the sequence STk is restored. So, 
during learning, the current sequence STk moves 
towards the optimal sequence Sm. 

It should be noted that if we consider symbols of 
sequences STk as synaptic weights of the neural 
network, then the learning process has a simple 
meaning: learning is searching for optimal weights 
of the synapses. 

At the end of the generation, the selection of 
individuals in accordance with their fitness takes 
place. The fitness is determined by the sequence STk 
at the time moment t = T. We denote this sequence 
of SFk, i.e. we set SFk = STk(t = Т). The fitness of the 
organism Sk is determined by the Hamming distance 
ρ = ρ(SFk,Sm) between the sequences SFk and Sm: 

 
f(Sk) = exp[-βρ(SFk,Sm)] + ε ,   (1) 

 
where β is the positive parameter, that characterizes 
the intensity of selection, 0 < ε << 1. The role of the 
parameter ε in (1) can be considered as the influence 
of random factors of the environment on the fitness 
of individuals. 

The selection of the individuals into a new 
generation is made by the well-known method of the 
fitness proportionate selection (or the roulette wheel 
selection). In this method individuals are selected 
into a new generation probabilistically. The choice 
of an individual into the next generation takes place 
n times, so the number of individuals in the 
population in all generations is equal to n. At any 
choice, the probability of the selection of a particular 
individual is proportional to its fitness.  

Thus, individuals are selected at the end of a 
generation in accordance with their phenotype codes 
SFk = STk(t = Т), i.e. in accordance with the final 
result of learning, whereas initial genomes S0k 
(modified by small mutations) are transmitted from 
parents to descendants. 

In addition, similar to the work [8], we take into 
account the learning load (or the cost of learning), 
namely, we consider the fact that the learning 
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process has a certain burden on the individual and 
fitness of the individual may be reduced under the 
influence of the load. For this purpose we use the 
modified fitness of individuals: 

 
 fm(Sk) = exp(-αd) {exp[-βρ(SFk,Sm)] + ε } ,   (2) 

 
where α is the positive parameter, which takes into 
account the learning load, d = ρ(S0k,SFk) is the  
Hamming distance between the initial S0k and final 
sequence SFk  of the individual, i.e. the value that 
characterizes the intensity of the whole learning 
process of the individual during its life. The factor 
exp(-αd) decreases the fitness of an individual, this 
decrease clearly depend on the change of the current 
sequence STk at the learning process. 

It should be noted that since initial sequences S0k 
of the individuals in the initial population are 
random, the average Hamming distance between 
these sequences and the optimal one Sm is 
approximately equal to N/2. The sequences Sk 
should overcome this distance by means of learning 
and evolution in order to reach Sm . 

 
3. RESULTS OF SIMULATION 

3.1. SCHEME AND PARAMETERS OF 
SIMULATION 

Two modes of operation of the model are 
consider below: 1) evolution combined with 
learning, as described above, 2) “pure evolution”, 
that is evolution without learning, in this case, the 
learning doesn't take place and it is believed that  STk 
= S0k . In addition, the influence of the learning load 
is analyzed; in this case, the fitness of an individual 
is calculated according to (2). Analysis of the model 
was carried out by means of computer simulation. 

The parameters of the model at simulation are 
chosen in such manner that the evolutionary search 
is effective; the experience of the work [13] for the 
case of pure evolution is used at this choice. The 
fitness of the individuals in [13] was determined 
analogously to the expression (1), only the influence 
of random factors wasn’t taken into account 
(formally this means that the value ε was equal to 0). 

The choice of parameters of simulation is as 
follows. We believe that the length of the chain is 
rather large: N = 100. We also set β = 1, this 
corresponds to a sufficiently high intensity of 
selection, so the selection time is small, the time of 
evolutionary search is determined mainly by 
mutations. The intensity of mutations must not be 
too large; in order to remove the possibility of 
mutation losses of already found good individuals. 
However, the intensity of mutations must not be too 
small, in order to ensure sufficiently large efficiency 
of mutational search during evolutionary 

optimization. Taking this into account, we believe 
that the probability to substitute any symbol in the 
sequence S0k at mutations in one generation is  pm = 
N -1 = 0.01. At this mutation intensity pm 
approximately one symbol in the genome of any 
individual is replaced at one generation, i.e. during 
one generation of the Hamming distance ρ between 
sequences of individuals Sk in population and the 
optimal sequence Sm changes on average by 1 by 
means of mutations. Selection leads to a decrease of 
this distance ρ. Since the intensity of selection is 
large, and the Hamming distance between sequences 
of the initial population and the optimal sequence Sm 
is of the order of N, the whole process of evolution 
will take approximately GT ~ N generations. Such an 
estimation of the rate of evolution is true, if the 
population size is large enough and the fluctuation 
effects and neutral selection of individuals (that is 
selection independent on fitness of individuals) can 
be neglected. To satisfy this condition, it is enough 
to require that the characteristic time of the neutral 
selection (which is of the order of the population 
size n [13, 15]), should be greater or of the order of 
GT , so we believe that n = GT = N. 

Thus, the parameters of simulation in accordance 
with the experience of the work [13] are chosen as 
follows: N = 100, β = 1, pm = N -1 = 0.01, n = GT = N 
= 100. 

In the current model we also believe that the 
probability of a random replacement of the symbols 
during learning pl is rather large: pl ~ 1, the number 
of time moments during the generation T is equal to 
2 (choice of such parameters pl and T means that 
learning is rather fast), the parameter ε is small: ε = 
10-6. 

The results of simulation are averaged over 1000 
or 10000 calculations corresponding to different 
random number generators. The results of simulation 
are described below. 

 
3.2. COMPARISON OF REGIMES OF 
PURE EVOLUTION AND EVOLUTION 
COMBINED WITH LEARNING 

Fig. 1 shows the dependence of the average of 
the Hamming distance ρ = ρ(Sk,Sm) between the 
sequences Sk  of the individuals in the population and 
the optimal sequence Sm at the beginning of 
generations (i.e. in this case ρ(Sk,Sm) = ρ(S0k,Sm)) on 
the generation number G . Curve 1 characterizes the 
regime of evolution combined with learning; curve 2 
characterizes the regime of pure evolution. The 
dependences are averaged for all individuals of 
population and for 1000 calculations. Fitness of 
individuals is determined by the expression (1). We 
can see that pure evolution without learning (curve 
2) doesn’t optimize individuals Sk at all even at 
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small values ε; whereas evolution combined with 
learning (curve 1) obviously ensures the movement 
towards the optimal individual Sm. 
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Fig. 1 – The dependence of <ρ> on the generation 
number G.  Curve 1 characterizes the regime of 

evolution combined with learning; curve 2 
characterizes the regime of pure evolution 

To understand, why the pure evolution doesn't 
ensure a decrease the value ρ, let's estimate the value 
of fitness (1) in the original population. Individuals 
of the initial population S0k are far from the optimal 
one Sm: the Hamming distance ρ = ρ(S0k,Sm) is of the 
order of N/2 = 50, therefore, exp(-ρ) ~ 10-22 and 
exp(-ρ) << ε. This means that all the individuals of 
the population have approximately the same value of 
the fitness f(Sk) ≈ ε. Consequently, a selection of the 
individuals doesn't occur in the case of the pure 
evolution. Thus, the movement towards Sm occurs 
only in the presence of learning; this movement 
leads to the decrease of ρ. A similar influence of 
learning on evolutionary optimization (though in 
another context) was described in the work [7]. 

Let's consider the effect of the acceleration of the 
evolutionary process by learning (curve 1 in Fig. 1). 
Analysis of the results of simulations shows that the 
gradual decrease in the values ρ = ρ(Sk,Sm) occurs as 
follows. During learning, the distribution of 
individuals n(ρ) on the value ρ in the population is 
shifted towards smaller ρ, so the values ρ = ρ(SFk,Sm) 
becomes small enough, then exp(-ρ(SFk,Sm)) is of the 
order of ε. Consequently, different individuals in the 
population in accordance with (1) have different 
fitness; so individuals with small values ρ(SFk,Sm) 
are selected into the population of the next 
generation. It is intuitively clear that the genomes of 
S0k of selected individuals should be rather close to 
the final sequences SFk (obtained as a result of the 
learning) of these individuals. Thus, the result of 
selection is the selection of individuals, which 
genomes are also moving to the optimal sequence 
Sm. Therefore, the value ρ in the new population 
decreases. 

The described mechanism is characterized by 
Fig. 2, which shows the distribution the n(ρ) on ρ in 
the population at different moments of the first 
generation. Curve 1 shows the distribution of the ρ = 
ρ(S0k,Sm) for the genomes of individuals at the 
beginning of the generation. Curve 2 shows the 

distribution of the ρ = ρ(SFk,Sm) for individuals after 
the learning, but before selection. Curve 3 shows the 
distribution of the ρ = ρ(SFk,Sm) for individuals, 
selected in accordance with the fitness (1). Curve 4 
shows the distribution of the ρ = ρ(S0k,Sm) for the 
genomes of selected individuals at the end of the 
generation. The genomes of selected individuals S0k 
are sufficiently close to the sequences of trained and 
selected individuals SFk, therefore the distribution of 
the ρ = ρ(S0k,Sm) for genomes (curve 4) moves 
towards the distribution for finite sequences Sfk 
(curve 3). Finally, after the selection at the end of 
the generation, the distribution of the genomes of ρ 
(curve 4) is formed; this distribution is closer to the 
distribution, which is represented by curve 3, than 
the initial distribution of genomes (curve 1). Similar 
displacement of the distribution of n(ρ) towards 
smaller values ρ takes place in the next generations. 
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Fig. 2 – The distribution n(ρ) in the first generation of 
evolution: curve 1 is the distribution of ρ =  ρ(S0k,Sm) 
for the original genomes before learning, curve 2 is the 
distribution of ρ = ρ(SFk,Sm) for individuals after the 

learning, but before the selection, curve 3 is the 
distribution of ρ = ρ(SFk,Sm) for selected individuals, 
curve 4  is the distribution of ρ =  ρ(S0k,Sm) for the 

genomes of selected individuals at the end of the 
generation (results are averaged on 10,000 

calculations) 
Such displacement reveals the mechanism of 

reduction of <ρ> in the presence of learning: the 
selection leads to the genomes of individuals S0k, 
which are closer to sequences of learned and 
selected individuals SFk, than the initial genomes of 
individuals at the beginning of the generation. As a 
result, a transition from curve 1 to curve 4, i.e. the 
decrease in the values ρ, takes place during a 
generation. 

It should be underlined that the decrease of 
values ρ at learning should be sufficiently large in 
order to ensure small role of the parameter ε and 
significant difference of the fitness (1) of 
individuals, and therefore, the effective selection of 
individuals with small values ρ(SFk,Sm). This 
selection corresponds to the essential decrease of the 
values of ρ at transition from curve 2 to curve 3 in 
Fig. 2. It is clear that in order to guarantee the 
effective operation this mechanism, learning should 
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be enough strong. The other role of a strong learning 
is characterized in the next subsection. 

The described results show that learning can lead 
to the effective genetic assimilation and to the 
radical acceleration of the evolutionary search. 

 
3.3. HIDING EFFECT  

However, a strong learning can not only 
accelerate the evolutionary search, but it can prevent 
to find the optimal genome. Curve 1 in Fig. 1 shows 
that at large G, the decrease of <ρ> = <ρ(S0k,Sm)>  is 
limited: the final value of the <ρ> remains quite 
large, the asymptotic value of the <ρ> is 
approximately equal to 6.2. This is due to the fact 
that at large G (G ~1000) the strong learning (pl = 1, 
Т = 2) results in finding the optimal sequence Sm 
independently on the genome S0k. Therefore, at the 
final stages of evolution the genomes S0k don't move 
towards the optimum Sm. So, the hiding effect [8] is 
observed. 

Thus, the mechanism of the hiding effect is 
analyzed. This effect means that the strong leaning 
prevents the evolutionary optimization, because it 
increases the chances of finding a good phenotype 
independently on the genome of the individual. 

 
3.4. INFLUENCE OF LEARNING LOAD ON 
MODELED PROCESSES  

We also analyzed the influence of the learning 
load on the modeled processes. For this case, fitness 
is determined by the expression (2). The simulation 
is performed for the mentioned parameters (N = n 
=100, β = 1, pm = 0.01, pl = 1, Т = 2 , ε = 10-6), the 
value α is equal to 1. The simulation results are 
represented by Fig. 3, 4. Fig. 3 shows the 
dependence of the average distance <ρ> between 
sequences Sk and the optimal sequence of Sm on the 
generation number G. Fig. 4 shows the dynamics of 
the distribution n(ρ) of values ρ at different moments 
of the first generation of the evolutionary process. 
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Fig. 3 – The dependence of the value <ρ> on the 
generation number G; the fitness of individuals is 
determined by the expression (2); the decrease of 

values <ρ> is much faster than that of in Fig. 1 (results 
are averaged on 1000 calculations) 
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Fig. 4 – The distribution n(ρ) in the first generation of 
evolution; the fitness of individuals is determined by 
the expression (2): curve 1 is the distribution of ρ =  
ρ(S0k,Sm) for the original genomes before learning, 

curve 2 is the distribution of ρ = ρ(SFk,Sm) for 
individuals after the learning, but before the selection, 

curve 3 is the distribution of ρ = ρ(SFk,Sm) for 
selected individuals, curve 4  is the distribution of ρ =  
ρ(S0k,Sm) for the genomes of selected individuals at 

the end of the generation; the displacement of the 
distributions to smaller values ρ is significantly faster 

than in Fig. 2 (results are averaged on 10,000 
calculations) 

It should be underlined that the genetic 
assimilation for cases of the fitness, determined by 
the expression (1) and the expression (2), has the 
same nature. In both cases, the genomes of selected 
individuals S0k approach to sequences SFk of trained 
and selected individuals. That is in both Fig. 2 and 
Fig. 4 the curve 4 moves towards the curve 3. A 
significant difference consists only in the fact that 
the learning load makes this movement more evident 
and more effective. Thus, the learning load leads to 
more effective selection of individuals with the 
genomes of S0k, which are close to Sm, and the 
evolution process is significantly accelerated. 

 
4. CONCLUSION 

Thus, the model of interaction between learning 
and evolutionary optimization has been constructed 
and investigated.  

The mechanism of the genetic assimilation is 
studied in details. The genetic assimilation can be 
described as follows: 1) learning and selection shift 
the distribution of individuals towards the optimum; 
2) genomes of selected individuals also move 
towards the optimum. The mechanism of the genetic 
assimilation is illustrated by Fig. 2. It is shown that 
the genetic assimilation can lead to a radical 
acceleration of evolutionary processes. 

The mechanism of the hiding effect is analyzed. 
This effect means that strong learning inhibits the 
evolutionary search of the optimal sequence, if this 
learning increases the chances of finding a good 
phenotype regardless of the genome of the 
individual.  

The influence of the learning load on the 
evolutionary processes is studied. It is shown that 
the learning load leads to effective genetic 
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assimilation and to a considerable acceleration of 
evolution. 

Future plans of our research include 
investigations of cognitive features of autonomous 
agents. These agents can be optimized by means of 
learning and evolution. 

 
5. ACKNOWLEDGMENTS 

This work is partially supported by the Russian 
Foundation for Basic Research, Grant No 13-01-
00399. The author thanks the anonymous reviewer 
for useful comments and recommendations.  

 
6. REFERENCES 

[1] J.M. Baldwin, A new factor in evolution, 
American Naturalist, (30) (1896), pp. 441-451. 

[2] C.L. Morgan, On modification and variation, 
Science, (4) (1896), pp 733-740. 

[3] H.F. Osborn, Ontogenetic and phylogenetic 
variation, Science, (4) (1896), pp. 786-789. 

[4] C.H. Waddington, Canalization of development 
and inheritance of acquired characters, Nature, 
(150) (1942), pp. 563-565. 

[5] Adaptive Organisms in Evolving Populations: 
Models and Algorithms. Eds. Belew R.K. and 
Mitchell M. Massachusetts: Addison-Wesley, 
1996. 

[6] Evolution, Learning, and Instinct: 100 Years of 
the Baldwin Effect. Eds. Turney P., Whitley D., 
Anderson R. Special Issue of Evolutionary 
Computation on the Baldwin Effect, (4) 3 
(1996). 

[7] G.E. Hinton, S.J. Nowlan, How learning can 
guide evolution, Complex Systems, (1) (1987), 
pp. 495-502. 

[8] G. Mayley, Guiding or hiding: Explorations 
into the effects of learning on the rate of 
evolution, In: Proceedings of the Fourth 
European Conference on Artificial Life (ECAL 
97). Eds. Husbands P. and Harvey I.  
Cambridge, Massachusetts: MIT Press,1997, 
pp. 135-144. 

[9] D. Ackley, M. Littman, Interactions between 
learning and evolution, In: Artificial Life II: 
Proceedings of the Second Artificial Life 
Workshop. Eds. Langton C. G., Taylor C., 
Farmer J. D., Rasmussen S. Redwood City CA: 
Addison-Wesley, 1992, pp. 487-509. 

[10] V.G. Red’ko, O.P. Mosalov, D.V. Prokhorov, 
A model of evolution and learning, Neural 
Networks, (18) 5-6 (2005), pp. 738-745. 

[11] M. Eigen, Selforganization of matter and the 
evolution of biological macromolecules, 
Naturwissenschaften, (58) 10 (1971), pp. 465-
523. 

[12] M. Eigen, P. Schuster, The hypercycle: A 
principle of natural self-organization. Springer 
Verlag: Berlin etc, 1979.  

[13] V.G. Red’ko, Yu.R. Tsoy, Estimation of the 
efficiency of evolution algorithms, Doklady 
Mathematics, (72) 2 (2005), pp. 810-813. 

[14] V.G. Red’ko, Yu.R. Tsoy, Efficiency of 
evolutionary search in quasispecies model, 
Fuzzy Systems and Soft Computing, (1) 1 
(2006).  

[15] M. Kimura, The Neutral Theory of Molecular 
Evolution, Cambridge University Press, 1983.  

 
 

Red’ko Vladimir Georgie-
vich, Deputy Director for 
Research of Center of Optical 
Neural Technologies, Scientific 
Research Institute for System 
Analysis, Russian Academy of 
Sciences. V.G. Red’ko gradua-
ted from the Moscow Institute 
of Physics and Technology in 
1971. He is the doctor of 

sciences (physics and mathematics). He is the 
author of more than 150 scientific publications, 
including two monographs. His scientific interests 
includes: the problem of origin of human intelligence, 
cognitive evolution, models of adaptive behavior, 
neuroinformatics.  

 

 




