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Abstract: The paper is dedicated to hierarchical Petri nets with application to design of control devices. It consists of 
two parts. The first part introduces a concept of simplifying analysis of flat Petri nets (we discuss analysis of 
reachability and liveness) by means of hierarchical decomposition. We present a class of subnets which can be replaced 
by the macroplaces. Further we describe properties of such decomposition and show, that analysis of the mentioned 
properties of a net can be reduced to the corresponding analysis of the elements of decomposition. A method allowing 
to obtain the decomposition is presented. The second part presents an approach to specification of a digital control 
system behavior by means of hierarchical Petri nets. We describe a model, called HPN, which has some of important 
properties, simplifying description of strongly reactive systems. 
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1. INTRODUCTION 
Petri nets [1] present a mathematical model 

describing parallel asynchronous discrete systems. 
Petri nets are used for modeling, simulation, analysis 
and synthesis of a wide range of systems, such as 
parallel algorithms, asynchronous digital circuits, 
networks, multitasking operating systems, 
communication protocols, distributed software, 
industrial control systems (especially real-time 
systems) and so on. Several languages for 
description of logical control algorithms, such as 
Grafcet, an industrial standard SFC and various 
forms of interpreted nets, are based on Petri nets or 
similar models (see, for example, [2,3]). 

Analysis of Petri nets is important in most of 
their applications. Often it is a time- and memory-
consuming task. Size of reachability space of a 
bounded Petri net depends exponentially on the net 
size (the unbounded nets have infinite reachability 
space), and a brute force approach does not allow 
practical analysis of the big nets. So many advanced 
methods of Petri net analysis have been developed. 
Liveness and reachability analysis belong to the 
main tasks of analysis of Petri nets. 

A perspective approach to simplifying analysis of 
Petri nets and, generally, to handling big discrete 
systems, is based on the idea of decomposition. The 
task of net analysis is reduced to the task of analysis 
of the blocks of its decomposition. Also for the 
synthesis purposes decomposition is useful. More 

material about theory and applications of net 
decomposition can be found in [4-6]. 

A Petri net model in its original form has no 
hierarchical structure. But hierarchical structures are 
required in many applications of Petri nets in system 
engineering; hierarchical description of a system 
simplifies greatly understanding of its functioning, 
its analysis, verification and implementation. So, 
numerous hierarchical Petri net models and the ways 
of hierarchical decomposition have been proposed 
(see [2,7,8]). 

A hierarchical structure is easy to process if all 
the elements at all the levels are of the same kind 
and need no special ways to describe and deal with. 
Below we describe a method that allows 
transforming a flat safe Petri net into a hierarchical 
one. The proposed method, being a combination of 
hierarchical and block decomposition, is simple and 
does not require exhausting of multiple variants; on 
the other hand, it allows selecting the subnets of 
complex structure. In the last part of the article we 
present a model of hierarchical Petri net which 
allows simple description of strongly reactive 
systems. The model supports many of important 
elements of behavioral description of control 
systems: behavioral hierarchy, similar to statecharts 
[17], prohibiting and enabling arcs which allow easy 
modeling of synchronization points, time 
dependencies which extend range of using the model 
in areas of real control. 
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2. DEFINITIONS (PETRI NETS) 
An ordinary Petri net [1,9] is a triple Σ = (P, T, 

F), where P is a set of places, T – a set of 
transitions; P∩T=Ø; F⊆(P×T)∪(T×P). For t∈T •t 
denotes {p∈P|(p,t)∈F}; t• denotes {p∈P|(t, p)∈F}; •t 
and t• are the sets of input and output places, 
respectively. 

A marking of a net is defined as a function M: 
P→{0, 1, 2,…}. It can be considered as a number of 
tokens situated in the net places. Number of tokens 
in a place p for marking M is denoted as M(p). Initial 
marking is denoted as M0.  

A transition t is enabled and can fire if ∀p∈•t: 
M(p) > 0. Transition firing removes one token from 
each input place and adds one token to each output 
place of it. 

A marking M' that can be reached from M by a 
sequence of transition firings (a firing sequence) σ = 
t1t2...tn is called reachable from M; we write MσM'. 
The set of all markings reachable from M is denoted 
as [M〉.  

A transition is live, if there is a reachable 
marking at which it is enabled. A net is live, if for 
every reachable marking every transition of the net 
is live. A net is quasi-live, if for the initial marking 
every transition of the net is live. A net is safe, if 
∀p∈P ∀M∈[M0〉 M(p) ≤ 1.  

Graphically Petri nets are presented as oriented 
graphs with nodes corresponding to places and 
transitions and the arcs joining places to transitions 
or transitions to places. Tokens are shown as dots 
inside the places. 

Definitions of subnets and the related notions see 
in [1]. Definition of block see in [3]. 
 

3. A CONCEPT OF HIERARCHICAL 
DECOMPOSITION OF PETRI NETS 

Consider the properties of a subnet that can be 
replaced with a place (see for example Fig. 1). 

Let )',','(' FTP=Σ  be a subnet of ),,( FTP=Σ . 
First of all, Σ’ must have an interface – a set of 
places P’i/o incident to the external transitions. P’i/o 
has two subsets - P’in and P’out, being output and 
input for the external transitions, correspondingly 
(those sets may intersect). The next condition must 
be satisfied: 
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That means that a subnet can get the tokens from 

the outside only into all of its input places together, 

and it can loose tokens from all the output places 
also only together. The initial marking also should 
be taken into account, so the next condition is 
needed: 
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Fig.1 - A Petri net and the top level of corresponding 

hierarchical Petri net (one of possible variants) 
 
Denote by M’in the marking such that 1)(' =pM in  if 
and only if inPp '∈ , and by M’out the marking such 
that 1)(' =pM out  if and only if outPp '∈ . It is 
reasonable to consider M’in as an initial marking for 
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the subnet (M’in=M’0). So one more condition is 
important: 

 
))['()'[(( 〉∈⇒〉∈∀ MMMMM outin                    (3) 

 
And finally, if all the places in P’out obtain 

tokens, no tokens should remain “inside” the subnet. 
This condition is described by the next formula: 

 
))'()'[(( outin MMMMM >⇒〉∈∀                     (4) 

 
Definition. A P-block is a subnet Σ’ of Petri net 

Σ, which satisfies conditions (1-4). 
So, if a subnet Σ' of Petri net Σ is a P-block, we 

can construct the net ),,( HHHH FTP=Σ  (meaning 
by H the higher level) in the next way (here HPq∈  
is the macroplace): 
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Correspondence between markings of ΣH and Σ, 

when Σ is safe, is described by the next formula: 
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The next lemmas demonstrate that the tasks of 

reachablity and liveness analysis of a Petri net can 
be reduced to the same tasks for the elements of the 
composition. Proofs are omitted because of limited 
space. 

Lemma 1. Let Σ be a safe Petri net, Σ’ its P-block, 
ΣH is constructed according to (5), M' is a projection 
on Σ’ of marking M of Σ. Then for Σ 〉∈ 21 [MM , if 
and only if: 

1. for ΣH: 〉∈ HH MM 21 [ , 
0)()( 21 == qMqM HH , or 

2. for ΣH: 〉∈ HH MM 21 [ , 0)(1 =qM H , 
1)(2 =qM H ; for Σ’: 〉∈ 2'[' MM out ; or 

3. for ΣH: 〉∈ HH MM 21 [ , 1)(1 =qM H , 
0)(2 =qM H ; for Σ’: 〉∈ inMM '['1 ; or 

4. for ΣH: 〉∈ HH MM 21 [ , 
1)()( 21 == qMqM HH , for Σ’: 

〉∈ 21 '[' MM , if the firing sequence in ΣH 
leading from M2H to M1H  does not 

contain transition t such that tq •∈ , or 
( 〉∈ 2'[' MM out , 〉∈ inMM '['1 ), otherwise; 
or 

5. HH MM 21 = , 〉∈ 21 '[' MM . 
 

Lemma 2. Let Σ be a safe Petri net, Σ’ its P-block. 
Σ is live, if and only if ΣH is live and Σ’ is quasi-live. 

How much P-decomposition simplifies the 
analysis? It is evaluated by the next lemma, 
describing dependency between cardinality of 
reachability sets of decomposed net and the elements 
of decomposition. 

Lemma 3 Let Σ be a safe Petri net, Σ’ its P-block., 
ΣH is constructed according to (5). Then 
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where [M0〉 concerns Σ, [M0H〉 - ΣH, [Min〉  - Σ’, 
correspondingly. 
 

Of course, a net can be decomposed into many 
subnets in hierarchical way; the affirmations 
analogous to the lemmas presented above but 
describing multi-level decomposition can be easily 
proved by using induction. Let us call a net 
decomposition P-decomposition, if all the subnets 
the net is decomposed into are the P-blocks (except 
of the net at the highest level). 
 
4. PROPERTIES OF P-DECOMPOSITION 

Lemma 4. If the nets Σ’ and Σ’’ are the P-blocks 
of net Σ, and Σ’’ is a subnet of Σ, then Σ’’ is a P-
block of Σ’. 

This ensures the possibility of hierarchical 
decomposition. 

Lemma 5. In the nets Σ’ and Σ’’ are the P-blocks 
of net Σ, and neither of those blocks is a subnet of 
the other, but ∅≠∩ ''' TT , then )'''\(1 ΣΣ=Σ , 

)'''(2 Σ∩Σ=Σ , )''\'(3 ΣΣ=Σ  and )'''(4 Σ∪Σ=Σ  are 
the P-blocks of Σ (see Fig. 2; it can be shown, that 
only those two variants of intersection of P-blocks 
are possible). 

It does not mean that for a Petri net one canonical 
P-decomposition with maximal number of blocks 
exists, because the P-blocks may intersect by places, 
having no common transitions. It is easy to see, that 
all the blocks Σ1, Σ2 and Σ3 in Fig. 2b cannot be 
replaced all together by the macroplaces in a higher-
level net. 

We have no polynomial algorithm allowing 
finding all the minimal P-blocks in a net; but as it 
was shown above (Lemma 3), even finding some of 
P-blocks can simplify the net analysis. 
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Fig.2 - Variants of intersection of P-blocks 

 
5. FINDING P-BLOCKS 

To check whether a subnet is a P-block, it is 
enough to check conditions (1-4). Checking of 
conditions (3,4) in general case requires constructing 
of the reachablilty graph; but if it is known that the 
net is live and safe, then such check can be 
performed easier. 

Lemma 6. If the net Σ is live and safe and a 
subnet Σ’ of it satisfies (1, 2), then Σ’ is a P-block. 

But even in a case when it is easy to decide 
whether a subnet is a P-block, decomposition is not 
a simple task because the number of subnets 
exponentially depends on the net size. 

It is easy to see, that any P-block Σ’ such that 
∅=∩ outin PP ''  is a block in the sense of [3], but not 

any block is a P-block. Affirmation 5.14 from [3] 
provides a simple way to find for a given Petri net its 
partition into the minimal blocks. This partition can 
be a base for finding a P-decomposition (without a 
guarantee that the P-blocks are minimal). Some 
blocks have to be united to obtain P-blocks. 

We propose the next algorithm for finding P-
blocks for a given safe Petri net Σ. 

Algorithm 1  
1. Obtain the partition of Σ into minimal 

blocks (according to Affirmation 5.14 in 
[3]). Do not consider below the blocks for 
which their internal places are marked at M0. 

2. For each block Σ’ such that 
 

))'()'(( inin PtPtTt ⊇⇒∅≠∩∈∀ ••      (8) 
 
attach the blocks Σ’’ such that outin PP ''' ⊆ , 
expanding Σ’ while it is possible and Σ’ 
does not satisfy (1,2). If Σ’ satisfies (1,2), 
then it is a P-block. 

3. For the blocks that are not included in P-
blocks at the previous step consider 
combinations of their parallel composition 
satisfying (8) and process them as in item 2. 

The algorithm allows to find some (not all) of P-
blocks of a net. After applying it to a flat net and 
composing the P-blocks into the macronets, the 
same algorithm can be applied to the highest-level 
net ΣH, and so on, while the highest-level net is 
decomposable. In such a way a multi-level 
hierarchical net can be constructed in bottom-up 
order. Some notes should be taken into account here: 
first, if some of the P-blocks detected by Algorithm 
1 intersect by the places, but have no common 
transitions, then, unlike for the blocks, partial 
composition is impossible for them; they may be 
only in a complete composition [3]. In such cases 
cardinality of the reachability set of those P-blocks 
equals the sum of cardinalities of reachability sets of 
the P-blocks, and for analysis purposes those P-
blocks should be united. In particular, there is no 
sense to build a macroplace from an SM-component 
[1], if it can be built from a "bigger" SM-component 
(covering the first one). For example, a subnet with 
transitions t7 and t8 in Fig. 1a satisfies definition of 
P-block, but there is no sense to select it, because the 
subnet consisting of transitions t6-t10 (and the 
incident places) can be selected (as it is done in Fig. 
1b).  

6. EXAMPLE 
Consider the net shown in Fig.1a. The subnets 

with the next sets of transitions are the P-blocks: {t3-
t15}, {t3-t5}, {t6-t10}, {t11-t15}, {t7,t8}, {t12,t13}. 
According to the notes above, there is sense to 
convert to macroplaces only the subnets 
corresponding to the sets {t3-t5}, {t6-t10} and {t11-t15}. 
So we obtain the hierarchical net, high level of 
which is shown in Fig. 1b. 

Suppose that we want to know, whether the 
marking is reachable with places p4, p9 and p15 
marked. At the highest level we have to check 
whether the marking is reachable at which 
macroplaces M3, M4 and M5 are marked. To check 
it, it is enough to make two steps of simulation of 
the higher-level net. Then at the lower level we have 
to check whether in the corresponding subnets the 
markings are reachable in which only places p4, p5, 
and p15 are marked, correspondingly. Such check is 
simple, because all those blocks are sequential. So 
we have answered the question without constructing 
of complete reachability graph of the net. 
 

7. HIERARCHICAL PETRI NETS 
There are many kinds of hierarchical nets 

described in the literature: HCPN (Hierarchical 
Coloured PN) [7], OOPN (Object Oriented PN) 
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[11], HOONets (Hierarchical Object-Oriented PN) 
[12], THORN (Timed Hierarchical Object-Related 
Nets) [13], MacroNets [14], PetriCharts [15], 
GrafChart (hierarchical extension of Grafcet [16]). 
Most of them are only formulated as mathematical 
models. Their fitness for the purpose is limited as 
they lack some effective elements of description 
which are required in engineering practice, e.g. time 
dependencies, the history of macrostates, 
preemption. An alternative model of hierarchical 
Petri was proposed in [2]. This model is called HPN 
(Hierarchical Petri Net) and it integrates most 
important elements of a formal description which are 
available in other kinds of nets, e.g. interpretation, 
time dependencies, enabling and inhibiting arcs, 
history and preemption mechanism. It has allowed 
the elaboration of an efficient model of specification 
of control systems with high flexibility of 
description methods and a clear graphic interface 
comparable to Statecharts (Fig. 4). 

There is a simple example showing a simplified 
control system of initial washing in an automatic 
washer (Fig. 3). 

 

  
Fig.3 - An example of automatic washer control 

 system 
 
After turning on the washing program valve V1 is 

opened and water is infused. The infusing process 
lasts to the moment of achieving L1 level. At the 
same time after exceeding L2 level (total sinking of 
heater H) if the temperature is below the required 
(TL1), the heater system is turned on. After valve V1 
closing the washing process is started, in which the 
washing cylinder is turned alternate left and right for 
10 sec. with a 5 sec. break between. The process of 
keeping the temperature constant is active for the 
whole washing cycle. The cycle is turned off after 
280 sec. and cylinder is stopped, the heater is turned-
off and valve V2 is opened for water removal. 

Interpreted hierarchical Petri net is presented 
graphically as an oriented graph, similar to the 
ordinary Petri nets. Places distinguished by 'x' 
determine condition of control left out from subnet. 
Macroplace is a place distinguished by double circle. 

With each macroplace a subnet is associated, which 
activity is dependent on token possession by this 
macro. An expansion of macroplace (subnet) is 
defined inside rounded rectangle. 
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Fig.4 - An example of HPN (automatic washer 
controller form [2]) 

 
Three sets of signals are assigned with the net: I, 

O and L, meaning sets of inputs, outputs and internal 
signals, respectively. The sets I and O are accessible 
on every level of hierarchy. Signals from set L can 
be of local or global range depending on point of 
their declarations. 

With the nodes the labels are associated. They are 
created on set S. Label assigned to place p is 
compound from names of signals separated by 
comma and it means subset active signals when 
place p is active. 

Transition’s label is compound from three 
elements: cond, abort and action. Two initial of 
them are given as logical expressions and they mean 
conditions of transition t enabling, weak and strong 
respectively. Strong condition (abort) is preceded by 
# and it is used for all input macroplaces of 
transition t preemption. The action component is 
created as the place’s label, but subset associated 
with this element is active only one clock cycle. 

Often a situation occurs in which internal states 
at selected hierarchy levels must be remembered. In 
HPN it is realized throughout ascribing history 
attribute {H} to selected macroplace. With token 
leaving a macro the tokens location in the adequate 
subnet is remembered. And after renewed macro 
activation tokens are inserted to the lately active 
places. For user convenience there is included a 
possibility of history attribute ascribing to all 
subordinated macros (operator {H*}). 

With places the time parameters are associated. 
Ascribing of time ι from discrete scale of time to 
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place p determines minimal activity time of this 
place. This means that output transition of place p 
will be enabled only after time ι, after the moment of 
activation of place p moment. This solution provides 
in practice important possibilities in describing of 
strongly time dependent systems. 

A mathematical model of HPN can be presented 
as follows. 

Definition. Hierarchical Petri Net is shown as a 
tuple: 

),,,,,,,,,,( τεαλψχδSFTPHPN =  (9) 
where: 
1. P  is a finite non-empty set of places. In “flat” 

nets with places the capacity function was 
assigned κ: P→N∪(∞), which described max 
number of tokens in place p. For reactive systems 
descriptions the function equals 1 for each place 
p∈P κ(p)=1. 

2. T  is a finite non-empty set of transitions. 
N=P∪T is the set of nodes. 

3. F  is a finite non-empty set of arcs, such that: 
F=Fo∪Fe∪Fi, where Fo⊂(P×T) ∪(T×P) is a set 
of ordinary arcs, Fe⊂(P×T) is a set of enabling 
arcs, Fi⊂(P×T) is a set of inhibitor arcs. 
Moreover (P×P)∪(T×T)=∅. 

4. S  is a finite non-empty set of signals, such that: 
S=I∪O∪L, where I, O and L mean sets of input, 
output and internal signals respectively. 

5. χ: P→2N, is a hierarchy function, describing set 
of immediate sub-nodes of place p. 

 Definition. A place p∈P is called basic place if 
χ(p)=∅. 

 Definition. A place p∈P is called macroplace if it 
isn’t a basic place: χ(p)≠∅. 
Set of nodes N, being in hierarchy relation to 
place p creates a subnet. Condition of disjointing 
of all subnets assigned to macroplaces is required 
(no common nodes and arcs). 

 Definition. A place p is the lowest ancestor of 
node n’, such that: n’∈χ(p), what is described by: 
la(n’)=p. 

6. ψ: P→{true,false}, is a boolean history function, 
assigning history attribute to each of place p, 
such that χ(p) ≠ ∅. For basic places the function 
is not defined. 

7. λ: N → 2S, is a labeling function, assigning 
expression created from elements of set S to 
nodes from N. Places may be labeled only by the 
elements from set O∪L (labels mean actions 
assigned to places), label of a transition may be 
composed by following elements: 
• cond – created on the set I∪L, being a 

Boolean expression imposed as a condition to 
transition t and generated by operators: !, + 

and *, corresponding to logical operators: not, 
or and and, respectively; 

• abort – created as a cond, but interpreted in 
another way (see the previous page), 
represented graphically by # at the beginning 
of the expression; 

• action – created on the set O∪L, meaning 
action assigned to transition t, represented 
graphically by / at the beginning of the 
expression. 

8. α: P→{true,false}, is an initial marking function, 
assigning attribute of initial place to the places 
p∈P. 

9. ε: P → {true,false}, is a final marking function, 
assigning attribute of final place to the places 
p∈P. 

10. τ is a function, assigning numbers from discrete 
scale of time to each element from set of nodes 
N. 
The operation of a net is determined by the 

movement of tokens. The rules of their movement 
are defined by conditions of transition enabling and 
action assigned to transition firing. 
 

Let ŧ0 mean an activation moment of node n∈N. 
The function τ(n) assigns a number to node n at the 
moment ŧ0: τ(n, ŧ0)=ŧ, where ŧ∈Ŧ. In further instants 
the number is decremented and after time ŧ it 
accomplishes value 0: τ(n, ŧ0+ŧ)=0.  
 

Definition. Pp
end is a set of final places of a subnet 

assigned to macroplace p, such that:  
 

end
ppp

Pptruep ∈⇒=∀
∈

')'(
)('
ε

χ
 (10) 

 
Definition. ξ: P→P is a function of the set of 

final places, such that for macroplace p it returns its 
set of final places: 

 
end
pPp =)(ξ   (11) 

 
The expression ξ* denotes a transitive-reflexive 

closure of ξ function, such that for each p∈P and 
χ(p)≠∅ the following predicates hold: 

 
- p ∈ ξ*(p), 
- ξ(p) ∈ ξ*(p), 
- p’∈ ξ*(p) ⇒ ξ(p’) ⊆ ξ*(p). 

 
Definition. A final marking of a subnet is such a 

marking, which contains all final places of that 
subnet. 

Let be given a hierarchical HPN net and place p 
from the set of places of this net. 
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Definition. A set of input places of transition t is 
called Pt

in(o), such that: Pt
in(o)={p∈P: (p,t) ∈Fo}. 

Definition. A set of enabling places of transition t 
is called Pt

in(e), such that: Pt
in(e) = {p∈P: (p,t) ∈Fe}. 

Definition. A set of inhibitor places of transition t 
is called Pt

in(i), such that: Pt
in(i) = {p∈P: (p,t) ∈Fi}. 

Definition. A set of output places of transition t is 
called Pt

out, such that: Pt
out={p∈P: (t,p) ∈Fo}. 

Definition. The function ac: P → {true,false} is 
called a place activity function and it assigns true to 
each place that has a token, or false otherwise. 

Definition. Let Ni mean a set of nodes assigned to 
a macroplace p by hierarchy function: Ni = χ(p), and 
let Fi mean set of all arcs joining nodes belonging to 
Ni. Then Zi is a subnet assigned to macroplace p, 
such that: Zi = Ni + Fi. All subnets assigned to 
macroplaces are required to be disjoint (no common 
nodes and arcs). 
 
The conditions of transition t enabling: 
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Note: From all conditions the following logical 
expression can be composed (the general condition): 
a*b*c*(d*e*f+g), that means a possibility of 
enabling transition t without the need to satisfy 
conditions d, e, and f if g is true. This situation is 
known as preemption. 
 
The actions assigned to transition t firing: 
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where ac(p,ŧe) means the state of possession (or 

not) of a token by place p at an instant, at which the 
token leaves place la(p). 

Note: Actions e-j are performed when τ(t) = 0. 
Action k is performed during all activity time of 
transition t. 
 

9. CONCLUSION 
A method of hierarchical decomposition of Petri 

nets is discussed in this paper; theoretical results on 
properties of the decomposition are presented. The 
proposed approach can be useful for verification of 
devices and systems, which behavior can be 
described by Petri nets. Certain analysis tasks, as we 
have shown, can be reduced to the analysis tasks for 
the elements of decomposition, which can 
remarkably reduce their complexity (in many cases 
depending exponentially on the net size). Further 
research work in this direction is going to be related 
with studying of application of the approach to some 
special verification tasks. Described model of 
hierarchical Petri net (HPN) is a useful tool for 
description and implementation of digital control 
systems. There are methods for formal analysis of 
selected properties of the model (e.g. liveness), but 
only for model without time dependencies. Further 
research will be steered also to extension of 
mentioned methods which can be applied to full 
HPN model. 
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