
Andrei Karatkevich, Grzegorz Andrzejewski / Computing, 2006, Vol. 5, Issue 1, 18-25

 18

HIERARCHICAL DECOMPOSITION OF PETRI NETS FOR ANALYSIS AND
DESIGN OF DIGITAL MICROSYSTEMS

Andrei Karatkevich, Grzegorz Andrzejewski

University of Zielona Góra, ul. Podgórna 50, 65-246 Zielona Góra, POLAND.

A.Karatkevich@iie.uz.zgora.pl,G.Andrzejewski@iie.uz.zgora.pl

Abstract: The paper is dedicated to hierarchical Petri nets with application to design of control devices. It consists of
two parts. The first part introduces a concept of simplifying analysis of flat Petri nets (we discuss analysis of
reachability and liveness) by means of hierarchical decomposition. We present a class of subnets which can be replaced
by the macroplaces. Further we describe properties of such decomposition and show, that analysis of the mentioned
properties of a net can be reduced to the corresponding analysis of the elements of decomposition. A method allowing
to obtain the decomposition is presented. The second part presents an approach to specification of a digital control
system behavior by means of hierarchical Petri nets. We describe a model, called HPN, which has some of important
properties, simplifying description of strongly reactive systems.

Keywords: Petri nets, hierarchy, decomposition, analysis, logical controllers.

1. INTRODUCTION
Petri nets [1] present a mathematical model

describing parallel asynchronous discrete systems.
Petri nets are used for modeling, simulation, analysis
and synthesis of a wide range of systems, such as
parallel algorithms, asynchronous digital circuits,
networks, multitasking operating systems,
communication protocols, distributed software,
industrial control systems (especially real-time
systems) and so on. Several languages for
description of logical control algorithms, such as
Grafcet, an industrial standard SFC and various
forms of interpreted nets, are based on Petri nets or
similar models (see, for example, [2,3]).

Analysis of Petri nets is important in most of
their applications. Often it is a time- and memory-
consuming task. Size of reachability space of a
bounded Petri net depends exponentially on the net
size (the unbounded nets have infinite reachability
space), and a brute force approach does not allow
practical analysis of the big nets. So many advanced
methods of Petri net analysis have been developed.
Liveness and reachability analysis belong to the
main tasks of analysis of Petri nets.

A perspective approach to simplifying analysis of
Petri nets and, generally, to handling big discrete
systems, is based on the idea of decomposition. The
task of net analysis is reduced to the task of analysis
of the blocks of its decomposition. Also for the
synthesis purposes decomposition is useful. More

material about theory and applications of net
decomposition can be found in [4-6].

A Petri net model in its original form has no
hierarchical structure. But hierarchical structures are
required in many applications of Petri nets in system
engineering; hierarchical description of a system
simplifies greatly understanding of its functioning,
its analysis, verification and implementation. So,
numerous hierarchical Petri net models and the ways
of hierarchical decomposition have been proposed
(see [2,7,8]).

A hierarchical structure is easy to process if all
the elements at all the levels are of the same kind
and need no special ways to describe and deal with.
Below we describe a method that allows
transforming a flat safe Petri net into a hierarchical
one. The proposed method, being a combination of
hierarchical and block decomposition, is simple and
does not require exhausting of multiple variants; on
the other hand, it allows selecting the subnets of
complex structure. In the last part of the article we
present a model of hierarchical Petri net which
allows simple description of strongly reactive
systems. The model supports many of important
elements of behavioral description of control
systems: behavioral hierarchy, similar to statecharts
[17], prohibiting and enabling arcs which allow easy
modeling of synchronization points, time
dependencies which extend range of using the model
in areas of real control.

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Andrei Karatkevich, Grzegorz Andrzejewski / Computing, 2006, Vol. 5, Issue 1, 18-25

 19

2. DEFINITIONS (PETRI NETS)
An ordinary Petri net [1,9] is a triple Σ = (P, T,

F), where P is a set of places, T – a set of
transitions; P∩T=Ø; F⊆(P×T)∪(T×P). For t∈T •t
denotes {p∈P|(p,t)∈F}; t• denotes {p∈P|(t, p)∈F}; •t
and t• are the sets of input and output places,
respectively.

A marking of a net is defined as a function M:
P→{0, 1, 2,…}. It can be considered as a number of
tokens situated in the net places. Number of tokens
in a place p for marking M is denoted as M(p). Initial
marking is denoted as M0.

A transition t is enabled and can fire if ∀p∈•t:
M(p) > 0. Transition firing removes one token from
each input place and adds one token to each output
place of it.

A marking M' that can be reached from M by a
sequence of transition firings (a firing sequence) σ =
t1t2...tn is called reachable from M; we write MσM'.
The set of all markings reachable from M is denoted
as [M〉.

A transition is live, if there is a reachable
marking at which it is enabled. A net is live, if for
every reachable marking every transition of the net
is live. A net is quasi-live, if for the initial marking
every transition of the net is live. A net is safe, if
∀p∈P ∀M∈[M0〉 M(p) ≤ 1.

Graphically Petri nets are presented as oriented
graphs with nodes corresponding to places and
transitions and the arcs joining places to transitions
or transitions to places. Tokens are shown as dots
inside the places.

Definitions of subnets and the related notions see
in [1]. Definition of block see in [3].

3. A CONCEPT OF HIERARCHICAL
DECOMPOSITION OF PETRI NETS

Consider the properties of a subnet that can be
replaced with a place (see for example Fig. 1).

Let)',','(' FTP=Σ be a subnet of),,(FTP=Σ .
First of all, Σ’ must have an interface – a set of
places P’i/o incident to the external transitions. P’i/o
has two subsets - P’in and P’out, being output and
input for the external transitions, correspondingly
(those sets may intersect). The next condition must
be satisfied:

))'()'((

))'()'((
:)'\(

outout

inin

PtPt

PtPt
TTt

⊇⇒∅≠∩

∧⊇⇒∅≠∩

∈∀

••

•• (1)

That means that a subnet can get the tokens from

the outside only into all of its input places together,

and it can loose tokens from all the output places
also only together. The initial marking also should
be taken into account, so the next condition is
needed:

)))()(:'('(
)))()(:'('(

0)(:'(

00

00

0

qMqMPqPp
qMqMPqPp

pMPp

outout

inin
=∈∀∧∈

∨=∈∀∧∈
⇒>∈∃

 (2)

t16

p8

t8

p9

t9

p10

t10

p7

p6

t6

t7

p4

t4

p5

t5

p3

t3

p13

t13

p14

t14

p15

t15

p12

p11

t11

t12

p16

p2

p1

t1

t17 t18

t2

b)

a)

Fig.1 - A Petri net and the top level of corresponding

hierarchical Petri net (one of possible variants)

Denote by M’in the marking such that 1)(' =pM in if
and only if inPp '∈ , and by M’out the marking such
that 1)(' =pM out if and only if outPp '∈ . It is
reasonable to consider M’in as an initial marking for

Andrei Karatkevich, Grzegorz Andrzejewski / Computing, 2006, Vol. 5, Issue 1, 18-25

 20

the subnet (M’in=M’0). So one more condition is
important:

))['()'[((〉∈⇒〉∈∀ MMMMM outin (3)

And finally, if all the places in P’out obtain

tokens, no tokens should remain “inside” the subnet.
This condition is described by the next formula:

))'()'[((outin MMMMM >⇒〉∈∀ (4)

Definition. A P-block is a subnet Σ’ of Petri net

Σ, which satisfies conditions (1-4).
So, if a subnet Σ' of Petri net Σ is a P-block, we

can construct the net),,(HHHH FTP=Σ (meaning
by H the higher level) in the next way (here HPq∈
is the macroplace):

))}),(:'()(
)())),(:'

)()((
)),())(
)(((|),{(

);'\(
};{)'\(

FpxPpTx
qyFypPp

Tyqx
FyxPyTx

TyPxyxF
TTT

qPPP

H

H

HH

HHH

H

H

∈∈∃∧∈∧
=∨∈∈∃∧

∈∧=∨
∈∧∈∧∈∨

∈∧∈=
=

∪=

 (5)

Correspondence between markings of ΣH and Σ,

when Σ is safe, is described by the next formula:

⎩
⎨
⎧

=∈
∈

=
qpPsM

PppM
pM H)),'(max(

),(
)((6)

The next lemmas demonstrate that the tasks of

reachablity and liveness analysis of a Petri net can
be reduced to the same tasks for the elements of the
composition. Proofs are omitted because of limited
space.

Lemma 1. Let Σ be a safe Petri net, Σ’ its P-block,
ΣH is constructed according to (5), M' is a projection
on Σ’ of marking M of Σ. Then for Σ 〉∈ 21 [MM , if
and only if:

1. for ΣH: 〉∈ HH MM 21 [,
0)()(21 == qMqM HH , or

2. for ΣH: 〉∈ HH MM 21 [, 0)(1 =qM H ,
1)(2 =qM H ; for Σ’: 〉∈ 2'[' MM out ; or

3. for ΣH: 〉∈ HH MM 21 [, 1)(1 =qM H ,
0)(2 =qM H ; for Σ’: 〉∈ inMM '['1 ; or

4. for ΣH: 〉∈ HH MM 21 [,
1)()(21 == qMqM HH , for Σ’:

〉∈ 21 '[' MM , if the firing sequence in ΣH
leading from M2H to M1H does not

contain transition t such that tq •∈ , or
(〉∈ 2'[' MM out , 〉∈ inMM '['1), otherwise;
or

5. HH MM 21 = , 〉∈ 21 '[' MM .

Lemma 2. Let Σ be a safe Petri net, Σ’ its P-block.
Σ is live, if and only if ΣH is live and Σ’ is quasi-live.

How much P-decomposition simplifies the
analysis? It is evaluated by the next lemma,
describing dependency between cardinality of
reachability sets of decomposed net and the elements
of decomposition.

Lemma 3 Let Σ be a safe Petri net, Σ’ its P-block.,
ΣH is constructed according to (5). Then

|'[||}1)(|[{|
|0)(|[{||[|

0

0
〉=〉∈+
+=〉∈=〉

inHHH

HHH
MqMMM

qMMMM
, (7)

where [M0〉 concerns Σ, [M0H〉 - ΣH, [Min〉 - Σ’,
correspondingly.

Of course, a net can be decomposed into many
subnets in hierarchical way; the affirmations
analogous to the lemmas presented above but
describing multi-level decomposition can be easily
proved by using induction. Let us call a net
decomposition P-decomposition, if all the subnets
the net is decomposed into are the P-blocks (except
of the net at the highest level).

4. PROPERTIES OF P-DECOMPOSITION

Lemma 4. If the nets Σ’ and Σ’’ are the P-blocks
of net Σ, and Σ’’ is a subnet of Σ, then Σ’’ is a P-
block of Σ’.

This ensures the possibility of hierarchical
decomposition.

Lemma 5. In the nets Σ’ and Σ’’ are the P-blocks
of net Σ, and neither of those blocks is a subnet of
the other, but ∅≠∩ ''' TT , then)'''\(1 ΣΣ=Σ ,

)'''(2 Σ∩Σ=Σ ,)''\'(3 ΣΣ=Σ and)'''(4 Σ∪Σ=Σ are
the P-blocks of Σ (see Fig. 2; it can be shown, that
only those two variants of intersection of P-blocks
are possible).

It does not mean that for a Petri net one canonical
P-decomposition with maximal number of blocks
exists, because the P-blocks may intersect by places,
having no common transitions. It is easy to see, that
all the blocks Σ1, Σ2 and Σ3 in Fig. 2b cannot be
replaced all together by the macroplaces in a higher-
level net.

We have no polynomial algorithm allowing
finding all the minimal P-blocks in a net; but as it
was shown above (Lemma 3), even finding some of
P-blocks can simplify the net analysis.

Andrei Karatkevich, Grzegorz Andrzejewski / Computing, 2006, Vol. 5, Issue 1, 18-25

 21

Fig.2 - Variants of intersection of P-blocks

5. FINDING P-BLOCKS

To check whether a subnet is a P-block, it is
enough to check conditions (1-4). Checking of
conditions (3,4) in general case requires constructing
of the reachablilty graph; but if it is known that the
net is live and safe, then such check can be
performed easier.

Lemma 6. If the net Σ is live and safe and a
subnet Σ’ of it satisfies (1, 2), then Σ’ is a P-block.

But even in a case when it is easy to decide
whether a subnet is a P-block, decomposition is not
a simple task because the number of subnets
exponentially depends on the net size.

It is easy to see, that any P-block Σ’ such that
∅=∩ outin PP '' is a block in the sense of [3], but not

any block is a P-block. Affirmation 5.14 from [3]
provides a simple way to find for a given Petri net its
partition into the minimal blocks. This partition can
be a base for finding a P-decomposition (without a
guarantee that the P-blocks are minimal). Some
blocks have to be united to obtain P-blocks.

We propose the next algorithm for finding P-
blocks for a given safe Petri net Σ.

Algorithm 1
1. Obtain the partition of Σ into minimal

blocks (according to Affirmation 5.14 in
[3]). Do not consider below the blocks for
which their internal places are marked at M0.

2. For each block Σ’ such that

))'()'((inin PtPtTt ⊇⇒∅≠∩∈∀ •• (8)

attach the blocks Σ’’ such that outin PP ''' ⊆ ,
expanding Σ’ while it is possible and Σ’
does not satisfy (1,2). If Σ’ satisfies (1,2),
then it is a P-block.

3. For the blocks that are not included in P-
blocks at the previous step consider
combinations of their parallel composition
satisfying (8) and process them as in item 2.

The algorithm allows to find some (not all) of P-
blocks of a net. After applying it to a flat net and
composing the P-blocks into the macronets, the
same algorithm can be applied to the highest-level
net ΣH, and so on, while the highest-level net is
decomposable. In such a way a multi-level
hierarchical net can be constructed in bottom-up
order. Some notes should be taken into account here:
first, if some of the P-blocks detected by Algorithm
1 intersect by the places, but have no common
transitions, then, unlike for the blocks, partial
composition is impossible for them; they may be
only in a complete composition [3]. In such cases
cardinality of the reachability set of those P-blocks
equals the sum of cardinalities of reachability sets of
the P-blocks, and for analysis purposes those P-
blocks should be united. In particular, there is no
sense to build a macroplace from an SM-component
[1], if it can be built from a "bigger" SM-component
(covering the first one). For example, a subnet with
transitions t7 and t8 in Fig. 1a satisfies definition of
P-block, but there is no sense to select it, because the
subnet consisting of transitions t6-t10 (and the
incident places) can be selected (as it is done in Fig.
1b).

6. EXAMPLE
Consider the net shown in Fig.1a. The subnets

with the next sets of transitions are the P-blocks: {t3-
t15}, {t3-t5}, {t6-t10}, {t11-t15}, {t7,t8}, {t12,t13}.
According to the notes above, there is sense to
convert to macroplaces only the subnets
corresponding to the sets {t3-t5}, {t6-t10} and {t11-t15}.
So we obtain the hierarchical net, high level of
which is shown in Fig. 1b.

Suppose that we want to know, whether the
marking is reachable with places p4, p9 and p15
marked. At the highest level we have to check
whether the marking is reachable at which
macroplaces M3, M4 and M5 are marked. To check
it, it is enough to make two steps of simulation of
the higher-level net. Then at the lower level we have
to check whether in the corresponding subnets the
markings are reachable in which only places p4, p5,
and p15 are marked, correspondingly. Such check is
simple, because all those blocks are sequential. So
we have answered the question without constructing
of complete reachability graph of the net.

7. HIERARCHICAL PETRI NETS
There are many kinds of hierarchical nets

described in the literature: HCPN (Hierarchical
Coloured PN) [7], OOPN (Object Oriented PN)

Andrei Karatkevich, Grzegorz Andrzejewski / Computing, 2006, Vol. 5, Issue 1, 18-25

 22

[11], HOONets (Hierarchical Object-Oriented PN)
[12], THORN (Timed Hierarchical Object-Related
Nets) [13], MacroNets [14], PetriCharts [15],
GrafChart (hierarchical extension of Grafcet [16]).
Most of them are only formulated as mathematical
models. Their fitness for the purpose is limited as
they lack some effective elements of description
which are required in engineering practice, e.g. time
dependencies, the history of macrostates,
preemption. An alternative model of hierarchical
Petri was proposed in [2]. This model is called HPN
(Hierarchical Petri Net) and it integrates most
important elements of a formal description which are
available in other kinds of nets, e.g. interpretation,
time dependencies, enabling and inhibiting arcs,
history and preemption mechanism. It has allowed
the elaboration of an efficient model of specification
of control systems with high flexibility of
description methods and a clear graphic interface
comparable to Statecharts (Fig. 4).

There is a simple example showing a simplified
control system of initial washing in an automatic
washer (Fig. 3).

Fig.3 - An example of automatic washer control

 system

After turning on the washing program valve V1 is

opened and water is infused. The infusing process
lasts to the moment of achieving L1 level. At the
same time after exceeding L2 level (total sinking of
heater H) if the temperature is below the required
(TL1), the heater system is turned on. After valve V1
closing the washing process is started, in which the
washing cylinder is turned alternate left and right for
10 sec. with a 5 sec. break between. The process of
keeping the temperature constant is active for the
whole washing cycle. The cycle is turned off after
280 sec. and cylinder is stopped, the heater is turned-
off and valve V2 is opened for water removal.

Interpreted hierarchical Petri net is presented
graphically as an oriented graph, similar to the
ordinary Petri nets. Places distinguished by 'x'
determine condition of control left out from subnet.
Macroplace is a place distinguished by double circle.

With each macroplace a subnet is associated, which
activity is dependent on token possession by this
macro. An expansion of macroplace (subnet) is
defined inside rounded rectangle.

P9

t6

P10

c1=L2 and (not TL1)

P4

t7

H

c1c2

c2=(not L2) or TL2

P13

t10

P14

P5

t9

<10sec>

<10sec>

<5sec><5sec>

CR

CL

P15

t11

P16

P6 {H}

<280sec>

s1

P11

t8

P12

V1
L1

P3

P1

t1t2

P2

start#(not start)

P3

t3

P5 P6

P4

P7

t4 #s1

P2 {H}

t5

P8

L3

V2

Fig.4 - An example of HPN (automatic washer
controller form [2])

Three sets of signals are assigned with the net: I,

O and L, meaning sets of inputs, outputs and internal
signals, respectively. The sets I and O are accessible
on every level of hierarchy. Signals from set L can
be of local or global range depending on point of
their declarations.

With the nodes the labels are associated. They are
created on set S. Label assigned to place p is
compound from names of signals separated by
comma and it means subset active signals when
place p is active.

Transition’s label is compound from three
elements: cond, abort and action. Two initial of
them are given as logical expressions and they mean
conditions of transition t enabling, weak and strong
respectively. Strong condition (abort) is preceded by
and it is used for all input macroplaces of
transition t preemption. The action component is
created as the place’s label, but subset associated
with this element is active only one clock cycle.

Often a situation occurs in which internal states
at selected hierarchy levels must be remembered. In
HPN it is realized throughout ascribing history
attribute {H} to selected macroplace. With token
leaving a macro the tokens location in the adequate
subnet is remembered. And after renewed macro
activation tokens are inserted to the lately active
places. For user convenience there is included a
possibility of history attribute ascribing to all
subordinated macros (operator {H*}).

With places the time parameters are associated.
Ascribing of time ι from discrete scale of time to

Andrei Karatkevich, Grzegorz Andrzejewski / Computing, 2006, Vol. 5, Issue 1, 18-25

 23

place p determines minimal activity time of this
place. This means that output transition of place p
will be enabled only after time ι, after the moment of
activation of place p moment. This solution provides
in practice important possibilities in describing of
strongly time dependent systems.

A mathematical model of HPN can be presented
as follows.

Definition. Hierarchical Petri Net is shown as a
tuple:

),,,,,,,,,,(τεαλψχδSFTPHPN = (9)
where:
1. P is a finite non-empty set of places. In “flat”

nets with places the capacity function was
assigned κ: P→N∪(∞), which described max
number of tokens in place p. For reactive systems
descriptions the function equals 1 for each place
p∈P κ(p)=1.

2. T is a finite non-empty set of transitions.
N=P∪T is the set of nodes.

3. F is a finite non-empty set of arcs, such that:
F=Fo∪Fe∪Fi, where Fo⊂(P×T) ∪(T×P) is a set
of ordinary arcs, Fe⊂(P×T) is a set of enabling
arcs, Fi⊂(P×T) is a set of inhibitor arcs.
Moreover (P×P)∪(T×T)=∅.

4. S is a finite non-empty set of signals, such that:
S=I∪O∪L, where I, O and L mean sets of input,
output and internal signals respectively.

5. χ: P→2N, is a hierarchy function, describing set
of immediate sub-nodes of place p.

 Definition. A place p∈P is called basic place if
χ(p)=∅.

 Definition. A place p∈P is called macroplace if it
isn’t a basic place: χ(p)≠∅.
Set of nodes N, being in hierarchy relation to
place p creates a subnet. Condition of disjointing
of all subnets assigned to macroplaces is required
(no common nodes and arcs).

 Definition. A place p is the lowest ancestor of
node n’, such that: n’∈χ(p), what is described by:
la(n’)=p.

6. ψ: P→{true,false}, is a boolean history function,
assigning history attribute to each of place p,
such that χ(p) ≠ ∅. For basic places the function
is not defined.

7. λ: N → 2S, is a labeling function, assigning
expression created from elements of set S to
nodes from N. Places may be labeled only by the
elements from set O∪L (labels mean actions
assigned to places), label of a transition may be
composed by following elements:
• cond – created on the set I∪L, being a

Boolean expression imposed as a condition to
transition t and generated by operators: !, +

and *, corresponding to logical operators: not,
or and and, respectively;

• abort – created as a cond, but interpreted in
another way (see the previous page),
represented graphically by # at the beginning
of the expression;

• action – created on the set O∪L, meaning
action assigned to transition t, represented
graphically by / at the beginning of the
expression.

8. α: P→{true,false}, is an initial marking function,
assigning attribute of initial place to the places
p∈P.

9. ε: P → {true,false}, is a final marking function,
assigning attribute of final place to the places
p∈P.

10. τ is a function, assigning numbers from discrete
scale of time to each element from set of nodes
N.
The operation of a net is determined by the

movement of tokens. The rules of their movement
are defined by conditions of transition enabling and
action assigned to transition firing.

Let ŧ0 mean an activation moment of node n∈N.
The function τ(n) assigns a number to node n at the
moment ŧ0: τ(n, ŧ0)=ŧ, where ŧ∈Ŧ. In further instants
the number is decremented and after time ŧ it
accomplishes value 0: τ(n, ŧ0+ŧ)=0.

Definition. Pp
end is a set of final places of a subnet

assigned to macroplace p, such that:

end
ppp

Pptruep ∈⇒=∀
∈

')'(
)('
ε

χ
 (10)

Definition. ξ: P→P is a function of the set of

final places, such that for macroplace p it returns its
set of final places:

end
pPp =)(ξ (11)

The expression ξ* denotes a transitive-reflexive

closure of ξ function, such that for each p∈P and
χ(p)≠∅ the following predicates hold:

- p ∈ ξ*(p),
- ξ(p) ∈ ξ*(p),
- p’∈ ξ*(p) ⇒ ξ(p’) ⊆ ξ*(p).

Definition. A final marking of a subnet is such a

marking, which contains all final places of that
subnet.

Let be given a hierarchical HPN net and place p
from the set of places of this net.

Andrei Karatkevich, Grzegorz Andrzejewski / Computing, 2006, Vol. 5, Issue 1, 18-25

 24

Definition. A set of input places of transition t is
called Pt

in(o), such that: Pt
in(o)={p∈P: (p,t) ∈Fo}.

Definition. A set of enabling places of transition t
is called Pt

in(e), such that: Pt
in(e) = {p∈P: (p,t) ∈Fe}.

Definition. A set of inhibitor places of transition t
is called Pt

in(i), such that: Pt
in(i) = {p∈P: (p,t) ∈Fi}.

Definition. A set of output places of transition t is
called Pt

out, such that: Pt
out={p∈P: (t,p) ∈Fo}.

Definition. The function ac: P → {true,false} is
called a place activity function and it assigns true to
each place that has a token, or false otherwise.

Definition. Let Ni mean a set of nodes assigned to
a macroplace p by hierarchy function: Ni = χ(p), and
let Fi mean set of all arcs joining nodes belonging to
Ni. Then Zi is a subnet assigned to macroplace p,
such that: Zi = Ni + Fi. All subnets assigned to
macroplaces are required to be disjoint (no common
nodes and arcs).

The conditions of transition t enabling:

truepacptla
Pp

=⇒=∃
∈

)()((12-a)

truepac
ein

t
oin

t PPp
=∀

∪∈
)(

)()(
 (12-b)

falsepac
iin

tPp
=∀

∈
)(

)(
 (12-c)

truetcond =)((12-d)

)0)'(

)'(()(
)(' *)(

=

=∀⇒∅≠∀
∈∈

pand

truepacp
ppPp oin

t

τ

χ
ξ (12-e)

0)(
)(

=∀
∈

p
oin

tPp
τ (12-f)

truetabort =)((12-g)

Note: From all conditions the following logical
expression can be composed (the general condition):
a*b*c*(d*e*f+g), that means a possibility of
enabling transition t without the need to satisfy
conditions d, e, and f if g is true. This situation is
known as preemption.

The actions assigned to transition t firing:

falsepac
oin

tPp
=∀

∈
:)(

)(
 (13a)

falsepacp
ppPp oin

t

=∀⇒∅≠∀
∈∈

:)'()(
)(' *)(χ

χ (13-b)

falses
pactionsPp oin

t

=∀∀
∈∈

:
)()(

 (13-c)

falsesp
pactionsppPp oin

t

=∀∀⇒∅≠∀
∈∈∈

:)(
)'()(' *)(χ

χ (13-d)

truepact
out

tPp
=∀⇒=

∈
:)(0)(τ (13-e)

))'(:)'())'((

))'((()(
)(' *

ppacfalsepla

trueplaacp
ppPp out

t

αψ

χ
χ

=⇒=∧

=∀⇒∅≠∀
∈∈ (13-f)

)),'(:)'(

)"())'((

))'((()(

))'(("

)(' *

e

plap

ppPp

tpacpacfalse

pactruepla

trueplaacp
out

t

=⇒

=∃∧=∧

=∀⇒∅≠∀

∈

∈∈

ξ

χ

ψ

χ

 (13-g)

))'(:)'(

)"())'((

))'((()(

))'(("

)(' *

ppac

truepactruepla

trueplaacp

plap

ppPp out
t

α

ψ

χ

ξ

χ

=⇒

=∀∧=∧

=∀⇒∅≠∀

∈

∈∈

(13-h)

trues
pactionsPp out

t

=∀∀
∈∈

:
)(

 (13-i)

):

)'(()(

)'(

)(' *

trues

truepacp

pactions

ppPp out
t

=∀⇒

=∀⇒∅≠∀

∈

∈∈ χ
χ

 (13-j)

>++<

=∀⇒=
∈

1,

:),(

00

)(0

ηιι

ηιτ

in

truest
tactions (13-k)

where ac(p,ŧe) means the state of possession (or

not) of a token by place p at an instant, at which the
token leaves place la(p).

Note: Actions e-j are performed when τ(t) = 0.
Action k is performed during all activity time of
transition t.

9. CONCLUSION
A method of hierarchical decomposition of Petri

nets is discussed in this paper; theoretical results on
properties of the decomposition are presented. The
proposed approach can be useful for verification of
devices and systems, which behavior can be
described by Petri nets. Certain analysis tasks, as we
have shown, can be reduced to the analysis tasks for
the elements of decomposition, which can
remarkably reduce their complexity (in many cases
depending exponentially on the net size). Further
research work in this direction is going to be related
with studying of application of the approach to some
special verification tasks. Described model of
hierarchical Petri net (HPN) is a useful tool for
description and implementation of digital control
systems. There are methods for formal analysis of
selected properties of the model (e.g. liveness), but
only for model without time dependencies. Further
research will be steered also to extension of
mentioned methods which can be applied to full
HPN model.

Andrei Karatkevich, Grzegorz Andrzejewski / Computing, 2006, Vol. 5, Issue 1, 18-25

 25

9. REFERENCES
[1] T, Murata. Petri nets: properties, analysis and

applications, Proceedings of IEEE 77 (1989). p.
541-580.

[2] G. Andrzejewski. Programowy model
interpretowanej sieci Petriego dla potrzeb
projektowania mikrosystemów cyfrowych.
Uniwersytet Zielonogórski, Zielona Gora, 2003.

[3] А. Д. Закревский, Параллельные алгоритмы
логического управления, Институт
технической кибернетики АНБ, 1999.

[4] G, Bruno et al. Scheduling hard real time
systems using high-level Petri nets, LNCS:
Application and Theory of Petri nets 616 (1992).
p. 93-112. Springer-Verlag, Berlin, 1992.

[5] A. Wegrzyn, M. Wegrzyn. Symbolic
verification of concurrent logic controllers by
means Petri nets. Proceedings of International
Conference “Computer-Aided Design of
Discrete Devices (CAD DD’99)”, Minsk,
Belarus, 1999, Vol. 1, p. 45-50.

[6] A. Zakrevskij, A. Karatkevich, M. Adamski. A
method of analysis of operational Petri nets.
Proceedings of International Conference
“Advanced Computer Systems (ACS’2001)”,
Poland, 2001, Kluwer Academic Publishers,
Boston, 2002, p. 449-460.

[7] K. Jensen. Coloured Petri nets. Basic concept,
analysis methods and practical use. Springer-
Verlag, Berlin, 1997.

[8] G. Andrzejewski, A. Karatkevich. Interpreted
hierarchical Petri nets in digital controller
design, Radioelektronika i Informatika (1)
(2005). p. 74-79.

[9] C. A. Petri, Kommunikation mit Automaten,
Institut für Instrumentelle Matematik, Bonn,
1962.

[10] M. Adamski, M. Wegrzyn, P. Wolanski. A
VHDL based approach to logic controller
design. Proceedings of International Conference
“Programmable Device and Systems
(PDS’98)”, Gliwice, Poland, 1998, p. 9-16.

[11] R.Esser: An object oriented Petri net approach
to embedded systems design, PhD thesis, Swiss
Federal Institute of Technology, Zurich, 1996

[12] J.E.Hong, D.H.Bae: HOONets: Hierarchical
Object-Oriented Petri Nets for System
Modeling and Analysis, KAIST Technical
Report CS/TR-98-132, November, 1998

[13] S.Schof, M.Sonnenschein, R.Wieting,: High-
level Modeling with THORNs, Proceedings of
the 14th International Congress on Cybernetics,
Namur, Belgium, 1995

[14] J.M.Fernandes, M.Adamski, A.J.Proenca:
VHDL Generation from Hierarchical Petri Net
Specifications of Parallel Controllers. IEE

Proc.: Computers and Digital Techniques, no.
144, vol. 2, Mar., 1997, pp. 127-137

[15] T.Holvoet, P.Verbaeten: Petri Charts: an
Alternative Technique For Hierarchical Net
Construction. In IEEE Conference on Systems,
Man and Cybernetics, 1995

[16] R. David, H. Alla: Petri Nets & Grafcet. Tools
for modeling discrete event systems. Prentice
Hall, New York, 1992

[17] D. Harrel. Statecharts: A Visual Formalism for
Complex Systems. Science of Computer
Programming, 8:231-274, 1987

Andrei Karatkevich, Received
the Ph.D. degree from Belarusian
State University of Informatics
and Radioelectronics in 1998.
Since 2000 he is an assistant
professor at Technical University
of Zielona Góra (since 2001 -
University of Zielona Góra). His
current research interests include
Petri net theory and its applications, especially to
problems related to analysis and verification of
parallel or distributed control systems.

Grzegorz Andrzejewski, Rece-
ived the Ph.D. degree from
Technical University of Szczecin
in 2002. Since 2002 he is an
assistant professor at University
of Zielona Góra. His current
research interests include
system level description of
control systems and algorithms
of their software and hardware synthesis.

